File size: 19,102 Bytes
cfd3735
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "683953b3",
   "metadata": {},
   "source": [
    "# Annoy\n",
    "\n",
    "> \"Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given query point. It also creates large read-only file-based data structures that are mmapped into memory so that many processes may share the same data.\"\n",
    "\n",
    "This notebook shows how to use functionality related to the `Annoy` vector database.\n",
    "\n",
    "via [Annoy](https://github.com/spotify/annoy) \n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3b450bdc",
   "metadata": {},
   "source": [
    "```{note}\n",
    "NOTE: Annoy is read-only - once the index is built you cannot add any more emebddings!\n",
    "If you want to progressively add new entries to your VectorStore then better choose an alternative!\n",
    "```"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6613d222",
   "metadata": {},
   "source": [
    "## Create VectorStore from texts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "dc7351b5",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.embeddings import HuggingFaceEmbeddings\n",
    "from langchain.vectorstores import Annoy\n",
    "\n",
    "embeddings_func = HuggingFaceEmbeddings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "d2cb5f7d",
   "metadata": {},
   "outputs": [],
   "source": [
    "texts = [\"pizza is great\", \"I love salad\", \"my car\", \"a dog\"]\n",
    "\n",
    "# default metric is angular\n",
    "vector_store = Annoy.from_texts(texts, embeddings_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a856b2d1",
   "metadata": {},
   "outputs": [],
   "source": [
    "# allows for custom annoy parameters, defaults are n_trees=100, n_jobs=-1, metric=\"angular\"\n",
    "vector_store_v2 = Annoy.from_texts(\n",
    "    texts, embeddings_func, metric=\"dot\", n_trees=100, n_jobs=1\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "8ada534a",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='pizza is great', metadata={}),\n",
       " Document(page_content='I love salad', metadata={}),\n",
       " Document(page_content='my car', metadata={})]"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vector_store.similarity_search(\"food\", k=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "0470c5c8",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='pizza is great', metadata={}), 1.0944390296936035),\n",
       " (Document(page_content='I love salad', metadata={}), 1.1273186206817627),\n",
       " (Document(page_content='my car', metadata={}), 1.1580758094787598)]"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# the score is a distance metric, so lower is better\n",
    "vector_store.similarity_search_with_score(\"food\", k=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4583b231",
   "metadata": {},
   "source": [
    "## Create VectorStore from docs"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fbe898a8",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.document_loaders import TextLoader\n",
    "from langchain.text_splitter import CharacterTextSplitter\n",
    "\n",
    "loader = TextLoader(\"../../../state_of_the_union.txt\")\n",
    "documents = loader.load()\n",
    "text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
    "docs = text_splitter.split_documents(documents)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "51ea6b5c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='Madam Speaker, Madam Vice President, our First Lady and Second Gentleman. Members of Congress and the Cabinet. Justices of the Supreme Court. My fellow Americans.  \\n\\nLast year COVID-19 kept us apart. This year we are finally together again. \\n\\nTonight, we meet as Democrats Republicans and Independents. But most importantly as Americans. \\n\\nWith a duty to one another to the American people to the Constitution. \\n\\nAnd with an unwavering resolve that freedom will always triumph over tyranny. \\n\\nSix days ago, Russia’s Vladimir Putin sought to shake the foundations of the free world thinking he could make it bend to his menacing ways. But he badly miscalculated. \\n\\nHe thought he could roll into Ukraine and the world would roll over. Instead he met a wall of strength he never imagined. \\n\\nHe met the Ukrainian people. \\n\\nFrom President Zelenskyy to every Ukrainian, their fearlessness, their courage, their determination, inspires the world.', metadata={'source': '../../../state_of_the_union.txt'}),\n",
       " Document(page_content='Groups of citizens blocking tanks with their bodies. Everyone from students to retirees teachers turned soldiers defending their homeland. \\n\\nIn this struggle as President Zelenskyy said in his speech to the European Parliament “Light will win over darkness.” The Ukrainian Ambassador to the United States is here tonight. \\n\\nLet each of us here tonight in this Chamber send an unmistakable signal to Ukraine and to the world. \\n\\nPlease rise if you are able and show that, Yes, we the United States of America stand with the Ukrainian people. \\n\\nThroughout our history we’ve learned this lesson when dictators do not pay a price for their aggression they cause more chaos.   \\n\\nThey keep moving.   \\n\\nAnd the costs and the threats to America and the world keep rising.   \\n\\nThat’s why the NATO Alliance was created to secure peace and stability in Europe after World War 2. \\n\\nThe United States is a member along with 29 other nations. \\n\\nIt matters. American diplomacy matters. American resolve matters.', metadata={'source': '../../../state_of_the_union.txt'}),\n",
       " Document(page_content='Putin’s latest attack on Ukraine was premeditated and unprovoked. \\n\\nHe rejected repeated efforts at diplomacy. \\n\\nHe thought the West and NATO wouldn’t respond. And he thought he could divide us at home. Putin was wrong. We were ready.  Here is what we did.   \\n\\nWe prepared extensively and carefully. \\n\\nWe spent months building a coalition of other freedom-loving nations from Europe and the Americas to Asia and Africa to confront Putin. \\n\\nI spent countless hours unifying our European allies. We shared with the world in advance what we knew Putin was planning and precisely how he would try to falsely justify his aggression.  \\n\\nWe countered Russia’s lies with truth.   \\n\\nAnd now that he has acted the free world is holding him accountable. \\n\\nAlong with twenty-seven members of the European Union including France, Germany, Italy, as well as countries like the United Kingdom, Canada, Japan, Korea, Australia, New Zealand, and many others, even Switzerland.', metadata={'source': '../../../state_of_the_union.txt'}),\n",
       " Document(page_content='We are inflicting pain on Russia and supporting the people of Ukraine. Putin is now isolated from the world more than ever. \\n\\nTogether with our allies –we are right now enforcing powerful economic sanctions. \\n\\nWe are cutting off Russia’s largest banks from the international financial system.  \\n\\nPreventing Russia’s central bank from defending the Russian Ruble making Putin’s $630 Billion “war fund” worthless.   \\n\\nWe are choking off Russia’s access to technology that will sap its economic strength and weaken its military for years to come.  \\n\\nTonight I say to the Russian oligarchs and corrupt leaders who have bilked billions of dollars off this violent regime no more. \\n\\nThe U.S. Department of Justice is assembling a dedicated task force to go after the crimes of Russian oligarchs.  \\n\\nWe are joining with our European allies to find and seize your yachts your luxury apartments your private jets. We are coming for your ill-begotten gains.', metadata={'source': '../../../state_of_the_union.txt'}),\n",
       " Document(page_content='And tonight I am announcing that we will join our allies in closing off American air space to all Russian flights – further isolating Russia – and adding an additional squeeze –on their economy. The Ruble has lost 30% of its value. \\n\\nThe Russian stock market has lost 40% of its value and trading remains suspended. Russia’s economy is reeling and Putin alone is to blame. \\n\\nTogether with our allies we are providing support to the Ukrainians in their fight for freedom. Military assistance. Economic assistance. Humanitarian assistance. \\n\\nWe are giving more than $1 Billion in direct assistance to Ukraine. \\n\\nAnd we will continue to aid the Ukrainian people as they defend their country and to help ease their suffering.  \\n\\nLet me be clear, our forces are not engaged and will not engage in conflict with Russian forces in Ukraine.  \\n\\nOur forces are not going to Europe to fight in Ukraine, but to defend our NATO Allies – in the event that Putin decides to keep moving west.', metadata={'source': '../../../state_of_the_union.txt'})]"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "docs[:5]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d080985b",
   "metadata": {},
   "outputs": [],
   "source": [
    "vector_store_from_docs = Annoy.from_documents(docs, embeddings_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "4931cb99",
   "metadata": {},
   "outputs": [],
   "source": [
    "query = \"What did the president say about Ketanji Brown Jackson\"\n",
    "docs = vector_store_from_docs.similarity_search(query)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "97969d5b",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Tonight. I call on the Senate to: Pass the Freedom to Vote Act. Pass the John Lewis Voting Rights Ac\n"
     ]
    }
   ],
   "source": [
    "print(docs[0].page_content[:100])"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79628542",
   "metadata": {},
   "source": [
    "## Create VectorStore via existing embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "3432eddb",
   "metadata": {},
   "outputs": [],
   "source": [
    "embs = embeddings_func.embed_documents(texts)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "b69f8408",
   "metadata": {},
   "outputs": [],
   "source": [
    "data = list(zip(texts, embs))\n",
    "\n",
    "vector_store_from_embeddings = Annoy.from_embeddings(data, embeddings_func)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "id": "e260758d",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='pizza is great', metadata={}), 1.0944390296936035),\n",
       " (Document(page_content='I love salad', metadata={}), 1.1273186206817627),\n",
       " (Document(page_content='my car', metadata={}), 1.1580758094787598)]"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vector_store_from_embeddings.similarity_search_with_score(\"food\", k=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "341390c2",
   "metadata": {},
   "source": [
    "## Search via embeddings"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "id": "b9bce06d",
   "metadata": {},
   "outputs": [],
   "source": [
    "motorbike_emb = embeddings_func.embed_query(\"motorbike\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "af2552c9",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[Document(page_content='my car', metadata={}),\n",
       " Document(page_content='a dog', metadata={}),\n",
       " Document(page_content='pizza is great', metadata={})]"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vector_store.similarity_search_by_vector(motorbike_emb, k=3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "c7a1a924",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='my car', metadata={}), 1.0870471000671387),\n",
       " (Document(page_content='a dog', metadata={}), 1.2095637321472168),\n",
       " (Document(page_content='pizza is great', metadata={}), 1.3254905939102173)]"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vector_store.similarity_search_with_score_by_vector(motorbike_emb, k=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b77be77",
   "metadata": {},
   "source": [
    "## Search via docstore id"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "id": "bbd971f0",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{0: '2d1498a8-a37c-4798-acb9-0016504ed798',\n",
       " 1: '2d30aecc-88e0-4469-9d51-0ef7e9858e6d',\n",
       " 2: '927f1120-985b-4691-b577-ad5cb42e011c',\n",
       " 3: '3056ddcf-a62f-48c8-bd98-b9e57a3dfcae'}"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "vector_store.index_to_docstore_id"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "id": "6dbf3365",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Document(page_content='pizza is great', metadata={})"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "some_docstore_id = 0  # texts[0]\n",
    "\n",
    "vector_store.docstore._dict[vector_store.index_to_docstore_id[some_docstore_id]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "id": "98b27172",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='pizza is great', metadata={}), 0.0),\n",
       " (Document(page_content='I love salad', metadata={}), 1.0734446048736572),\n",
       " (Document(page_content='my car', metadata={}), 1.2895267009735107)]"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# same document has distance 0\n",
    "vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6f570f69",
   "metadata": {},
   "source": [
    "## Save and load"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "id": "ef91cc69",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "saving config\n"
     ]
    }
   ],
   "source": [
    "vector_store.save_local(\"my_annoy_index_and_docstore\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "7a9d2fce",
   "metadata": {},
   "outputs": [],
   "source": [
    "loaded_vector_store = Annoy.load_local(\n",
    "    \"my_annoy_index_and_docstore\", embeddings=embeddings_func\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "bba77cae",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='pizza is great', metadata={}), 0.0),\n",
       " (Document(page_content='I love salad', metadata={}), 1.0734446048736572),\n",
       " (Document(page_content='my car', metadata={}), 1.2895267009735107)]"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# same document has distance 0\n",
    "loaded_vector_store.similarity_search_with_score_by_index(some_docstore_id, k=3)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "df4beb83",
   "metadata": {},
   "source": [
    "## Construct from scratch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "26fcf742",
   "metadata": {},
   "outputs": [],
   "source": [
    "import uuid\n",
    "from annoy import AnnoyIndex\n",
    "from langchain.docstore.document import Document\n",
    "from langchain.docstore.in_memory import InMemoryDocstore\n",
    "\n",
    "metadatas = [{\"x\": \"food\"}, {\"x\": \"food\"}, {\"x\": \"stuff\"}, {\"x\": \"animal\"}]\n",
    "\n",
    "# embeddings\n",
    "embeddings = embeddings_func.embed_documents(texts)\n",
    "\n",
    "# embedding dim\n",
    "f = len(embeddings[0])\n",
    "\n",
    "# index\n",
    "metric = \"angular\"\n",
    "index = AnnoyIndex(f, metric=metric)\n",
    "for i, emb in enumerate(embeddings):\n",
    "    index.add_item(i, emb)\n",
    "index.build(10)\n",
    "\n",
    "# docstore\n",
    "documents = []\n",
    "for i, text in enumerate(texts):\n",
    "    metadata = metadatas[i] if metadatas else {}\n",
    "    documents.append(Document(page_content=text, metadata=metadata))\n",
    "index_to_docstore_id = {i: str(uuid.uuid4()) for i in range(len(documents))}\n",
    "docstore = InMemoryDocstore(\n",
    "    {index_to_docstore_id[i]: doc for i, doc in enumerate(documents)}\n",
    ")\n",
    "\n",
    "db_manually = Annoy(\n",
    "    embeddings_func.embed_query, index, metric, docstore, index_to_docstore_id\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "2b3f6f5c",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[(Document(page_content='pizza is great', metadata={'x': 'food'}),\n",
       "  1.1314140558242798),\n",
       " (Document(page_content='I love salad', metadata={'x': 'food'}),\n",
       "  1.1668788194656372),\n",
       " (Document(page_content='my car', metadata={'x': 'stuff'}), 1.226445198059082)]"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "db_manually.similarity_search_with_score(\"eating!\", k=3)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}