Spaces:
Sleeping
Sleeping
File size: 9,685 Bytes
cfd3735 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
{
"cells": [
{
"cell_type": "markdown",
"id": "94e33ebe",
"metadata": {},
"source": [
"# How to create a custom Memory class\n",
"Although there are a few predefined types of memory in LangChain, it is highly possible you will want to add your own type of memory that is optimal for your application. This notebook covers how to do that."
]
},
{
"cell_type": "markdown",
"id": "bdfd0305",
"metadata": {},
"source": [
"For this notebook, we will add a custom memory type to `ConversationChain`. In order to add a custom memory class, we need to import the base memory class and subclass it."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "6d787ef2",
"metadata": {},
"outputs": [],
"source": [
"from langchain import OpenAI, ConversationChain\n",
"from langchain.schema import BaseMemory\n",
"from pydantic import BaseModel\n",
"from typing import List, Dict, Any"
]
},
{
"cell_type": "markdown",
"id": "9489e5e1",
"metadata": {},
"source": [
"In this example, we will write a custom memory class that uses spacy to extract entities and save information about them in a simple hash table. Then, during the conversation, we will look at the input text, extract any entities, and put any information about them into the context.\n",
"\n",
"* Please note that this implementation is pretty simple and brittle and probably not useful in a production setting. Its purpose is to showcase that you can add custom memory implementations.\n",
"\n",
"For this, we will need spacy."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "48a5dd13",
"metadata": {},
"outputs": [],
"source": [
"# !pip install spacy\n",
"# !python -m spacy download en_core_web_lg"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "ff065f58",
"metadata": {},
"outputs": [],
"source": [
"import spacy\n",
"nlp = spacy.load('en_core_web_lg')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "1d45d429",
"metadata": {},
"outputs": [],
"source": [
"class SpacyEntityMemory(BaseMemory, BaseModel):\n",
" \"\"\"Memory class for storing information about entities.\"\"\"\n",
"\n",
" # Define dictionary to store information about entities.\n",
" entities: dict = {}\n",
" # Define key to pass information about entities into prompt.\n",
" memory_key: str = \"entities\"\n",
" \n",
" def clear(self):\n",
" self.entities = {}\n",
"\n",
" @property\n",
" def memory_variables(self) -> List[str]:\n",
" \"\"\"Define the variables we are providing to the prompt.\"\"\"\n",
" return [self.memory_key]\n",
"\n",
" def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, str]:\n",
" \"\"\"Load the memory variables, in this case the entity key.\"\"\"\n",
" # Get the input text and run through spacy\n",
" doc = nlp(inputs[list(inputs.keys())[0]])\n",
" # Extract known information about entities, if they exist.\n",
" entities = [self.entities[str(ent)] for ent in doc.ents if str(ent) in self.entities]\n",
" # Return combined information about entities to put into context.\n",
" return {self.memory_key: \"\\n\".join(entities)}\n",
"\n",
" def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:\n",
" \"\"\"Save context from this conversation to buffer.\"\"\"\n",
" # Get the input text and run through spacy\n",
" text = inputs[list(inputs.keys())[0]]\n",
" doc = nlp(text)\n",
" # For each entity that was mentioned, save this information to the dictionary.\n",
" for ent in doc.ents:\n",
" ent_str = str(ent)\n",
" if ent_str in self.entities:\n",
" self.entities[ent_str] += f\"\\n{text}\"\n",
" else:\n",
" self.entities[ent_str] = text"
]
},
{
"cell_type": "markdown",
"id": "429ba264",
"metadata": {},
"source": [
"We now define a prompt that takes in information about entities as well as user input"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c05159b6",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts.prompt import PromptTemplate\n",
"\n",
"template = \"\"\"The following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.\n",
"\n",
"Relevant entity information:\n",
"{entities}\n",
"\n",
"Conversation:\n",
"Human: {input}\n",
"AI:\"\"\"\n",
"prompt = PromptTemplate(\n",
" input_variables=[\"entities\", \"input\"], template=template\n",
")"
]
},
{
"cell_type": "markdown",
"id": "db611041",
"metadata": {},
"source": [
"And now we put it all together!"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f08dc8ed",
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)\n",
"conversation = ConversationChain(llm=llm, prompt=prompt, verbose=True, memory=SpacyEntityMemory())"
]
},
{
"cell_type": "markdown",
"id": "92a5f685",
"metadata": {},
"source": [
"In the first example, with no prior knowledge about Harrison, the \"Relevant entity information\" section is empty."
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "5b96e836",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.\n",
"\n",
"Relevant entity information:\n",
"\n",
"\n",
"Conversation:\n",
"Human: Harrison likes machine learning\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished ConversationChain chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"\" That's great to hear! Machine learning is a fascinating field of study. It involves using algorithms to analyze data and make predictions. Have you ever studied machine learning, Harrison?\""
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"Harrison likes machine learning\")"
]
},
{
"cell_type": "markdown",
"id": "b1faa743",
"metadata": {},
"source": [
"Now in the second example, we can see that it pulls in information about Harrison."
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "4bca7070",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\n",
"\u001b[1m> Entering new ConversationChain chain...\u001b[0m\n",
"Prompt after formatting:\n",
"\u001b[32;1m\u001b[1;3mThe following is a friendly conversation between a human and an AI. The AI is talkative and provides lots of specific details from its context. If the AI does not know the answer to a question, it truthfully says it does not know. You are provided with information about entities the Human mentions, if relevant.\n",
"\n",
"Relevant entity information:\n",
"Harrison likes machine learning\n",
"\n",
"Conversation:\n",
"Human: What do you think Harrison's favorite subject in college was?\n",
"AI:\u001b[0m\n",
"\n",
"\u001b[1m> Finished ConversationChain chain.\u001b[0m\n"
]
},
{
"data": {
"text/plain": [
"' From what I know about Harrison, I believe his favorite subject in college was machine learning. He has expressed a strong interest in the subject and has mentioned it often.'"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"conversation.predict(input=\"What do you think Harrison's favorite subject in college was?\")"
]
},
{
"cell_type": "markdown",
"id": "58b856e3",
"metadata": {},
"source": [
"Again, please note that this implementation is pretty simple and brittle and probably not useful in a production setting. Its purpose is to showcase that you can add custom memory implementations."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a1994600",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|