File size: 11,090 Bytes
c268c45 bb7225b e222dff c268c45 3d8629a a54671e 63a7e28 c4d7d0b 6fd0d30 c4d7d0b 634ebde c4d7d0b 4076aec c268c45 0b4fb1b c268c45 634ebde d345eca 3d8629a d345eca 3d8629a d345eca eb90bce d345eca eb90bce d345eca 38af778 d345eca 4076aec d345eca 4076aec d345eca beec66a 4076aec beec66a 4076aec beec66a 4076aec d345eca 38af778 d345eca 38af778 dc9c974 4076aec dc9c974 eb90bce beec66a 4076aec dc9c974 4076aec dc9c974 4076aec dc9c974 4076aec dc9c974 38af778 dc9c974 4076aec dc9c974 4076aec dc9c974 d345eca dc9c974 d345eca a54671e 3d8629a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import time
import json
import requests
import streamlit as st
import os
from urllib.parse import urlencode, urlparse, parse_qs
st.set_page_config(page_title="ViEduChat - Trợ lý AI giáo dục Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="collapsed")
# ==== MODULE URL ====
routing_response_module = st.secrets["ViEduQA_Routing_Module"]
retrieval_module = st.secrets["ViEduQA_Retrieval_Module"]
reranker_module = st.secrets["ViEduQA_Rerank_Module"]
abs_QA_module = st.secrets["ViEduQA_QA_Module"]
url_api_question_classify_model = f"{routing_response_module}/query_classify"
url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question"
url_api_introduce_system_model = f"{routing_response_module}/about_me"
url_api_retrieval_model = f"{retrieval_module}/search"
url_api_reranker_model = f"{reranker_module}/rerank"
url_api_generation_model = f"{abs_QA_module}/answer"
url_api_extract_reference_model = f"{routing_response_module}/extract_references_unstream"
# ========== STREAMLIT UI ==========
with open("./static/styles.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
if 'messages' not in st.session_state:
st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI giáo dục Việt Nam được phát triển bởi Đào Thị Ngọc Ánh. Rất vui khi được hỗ trợ bạn trong học tập!"}]
st.markdown(f"""
<div class=logo_area>
<img src="./app/static/ai.jpg"/>
</div>
""", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>ViEduChat</h2>", unsafe_allow_html=True)
def classify_question(question):
data = {
"question": question
}
response = requests.post(url_api_question_classify_model, json=data)
if response.status_code == 200:
print(response)
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def introduce_system(question):
data = {
"question": question
}
response = requests.post(url_api_introduce_system_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def response_unrelated_question(question):
data = {
"question": question
}
response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
def retrieve_context(question, top_k=10):
data = {
"query": question,
"top_k": top_k
}
response = requests.post(url_api_retrieval_model, json=data)
if response.status_code == 200:
results = response.json()["results"]
return results
else:
return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}"
def rerank_context(url_rerank_module, question, relevant_docs, top_k=5):
data = {
"question": question,
"relevant_docs": relevant_docs,
"top_k": top_k
}
response = requests.post(url_rerank_module, json=data)
if response.status_code == 200:
results = response.json()["reranked_docs"]
return results
else:
return f"Lỗi tại Rerank module: {response.status_code} - {response.text}"
def get_abstractive_answer(context, question):
data = {
"context": context,
"question": question
}
response = requests.post(url_api_generation_model, json=data, stream=True)
if response.status_code == 200:
return response
else:
return f"Lỗi: {response.status_code} - {response.text}"
# def get_references(context, question, answer):
# data = {
# "context": context,
# "question": question,
# "answer": answer
# }
# response = requests.post(url_api_extract_reference_model, json=data)
# if response.status_code == 200:
# return response.json()["refs"]
# else:
# return f"Lỗi tại module Reference Extractor: {response.status_code} - {response.text}"
def generate_text_effect(answer):
words = answer.split()
for i in range(len(words)):
time.sleep(0.03)
yield " ".join(words[:i+1])
for message in st.session_state.messages:
if message['role'] == 'assistant':
avatar_class = "assistant-avatar"
message_class = "assistant-message"
avatar = './app/static/ai.jpg'
else:
avatar_class = ""
message_class = "user-message"
avatar = ''
st.markdown(f"""
<div class="{message_class}">
<img src="{avatar}" class="{avatar_class}" />
<div class="stMarkdown">{message['content']}</div>
</div>
""", unsafe_allow_html=True)
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
st.markdown(f"""
<div class="user-message">
<div class="stMarkdown">{prompt}</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'user', 'content': prompt})
message_placeholder = st.empty()
# full_response = ""
# classify_result = classify_question(question=prompt).json()
# print(f"The type of user query: {classify_result}")
# if classify_result == "EDUCATION_RELATED":
retrieved_context = retrieve_context(question=prompt, top_k=10)
retrieved_context = [item['text'] for item in retrieved_context]
reranked_context = rerank_context(url_rerank_module=url_api_reranker_model,
question=prompt,
relevant_docs=retrieved_context,
top_k=5)[0]
abs_answer = get_abstractive_answer(context=reranked_context, question=prompt)
if isinstance(abs_answer, str):
full_response = abs_answer
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">{full_response}</div>
</div>
""", unsafe_allow_html=True)
else:
full_response = ""
for line in abs_answer.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
data_str = line[6:]
if data_str == '[DONE]':
break
try:
data = json.loads(data_str)
token = data.get('token', '')
full_response += token
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
except json.JSONDecodeError:
pass
# refs = st.expander("Tài liệu tham khảo", expanded=False)
# refs_list = get_references(context=reranked_context, question=prompt, answer=full_response)
# print(refs_list)
# refs.write(f"{refs_list}")
# elif classify_result == "ABOUT_CHATBOT":
# answer = introduce_system(question=prompt)
# if isinstance(answer, str):
# full_response = answer
# message_placeholder.markdown(f"""
# <div class="assistant-message">
# <img src="./app/static/ai.jpg" class="assistant-avatar" />
# <div class="stMarkdown">{full_response}</div>
# </div>
# """, unsafe_allow_html=True)
# else:
# full_response = ""
# for line in answer.iter_lines():
# if line:
# line = line.decode('utf-8')
# if line.startswith('data: '):
# data_str = line[6:]
# if data_str == '[DONE]':
# break
# try:
# data = json.loads(data_str)
# token = data.get('token', '')
# full_response += token
# message_placeholder.markdown(f"""
# <div class="assistant-message">
# <img src="./app/static/ai.jpg" class="assistant-avatar" />
# <div class="stMarkdown">{full_response}●</div>
# </div>
# """, unsafe_allow_html=True)
# except json.JSONDecodeError:
# pass
# else:
# answer = response_unrelated_question(question=prompt)
# if isinstance(answer, str):
# full_response = answer
# message_placeholder.markdown(f"""
# <div class="assistant-message">
# <img src="./app/static/ai.jpg" class="assistant-avatar" />
# <div class="stMarkdown">{full_response}</div>
# </div>
# """, unsafe_allow_html=True)
# else:
# full_response = ""
# for line in answer.iter_lines():
# if line:
# line = line.decode('utf-8')
# if line.startswith('data: '):
# data_str = line[6:]
# if data_str == '[DONE]':
# break
# try:
# data = json.loads(data_str)
# token = data.get('token', '')
# full_response += token
# message_placeholder.markdown(f"""
# <div class="assistant-message">
# <img src="./app/static/ai.jpg" class="assistant-avatar" />
# <div class="stMarkdown">{full_response}●</div>
# </div>
# """, unsafe_allow_html=True)
# except json.JSONDecodeError:
# pass
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">
{full_response}
</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'assistant', 'content': full_response}) |