File size: 5,605 Bytes
ce57c5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import re
import csv
import json
import time
import random
import requests
import feedparser
from bs4 import BeautifulSoup
from urllib.parse import quote
from datetime import datetime

def extract_data_from_publication_info(publication_info):

    authors = ""
    journal = ""
    year = ""
    publisher = ""

    regex_pattern = r"(.+?)\s+-\s+(.+?),\s+(\d{4})\s+-\s+(.+)$"

    match = re.match(regex_pattern, publication_info)

    if match:
        authors = match.group(1).strip()
        journal = match.group(2).strip()
        year = match.group(3).strip()
        publisher = match.group(4).strip()
    else:
        authors = "Unknown"
        journal = "Unknown"
        year = "Unknown"
        publisher = "Unknown"

    return {
        "authors": authors,
        "journal": journal,
        "year": year,
        "publisher": publisher
    }

def scrape_gg_scholar(query, num_pages=1, start_year=None, end_year=None):
    results = []

    header = {
        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"
    }

    base_url = "https://scholar.google.com/scholar?"

    params = {
        "q": query.replace(" ", "+"),
        "hl": "en",
        "as_sdt": "0,5"
    }

    if start_year and end_year:
        params["as_ylo"] = start_year
        params["as_yhi"] = end_year

    for pages in range(num_pages):
        start = pages * 10
        params["start"] = start

        url_params = "&".join([f"{k}={v}" for k, v in params.items()])

        url = base_url + url_params

        try:
            response = requests.get(url, headers=header)

            if response.status_code == 200:
                soup = BeautifulSoup(response.text, "html.parser")

                articles = soup.select(".gs_r.gs_or.gs_scl")

                for article in articles:
                    title_element = article.select_one(".gs_rt a")

                    if title_element:
                        title = title_element.text
                        link = title_element["href"]

                        abstract_element = article.select_one(".gs_rs")
                        abstract = abstract_element.text if abstract_element else ""
                        abstract = abstract.replace("…", "").strip()
                        abstract = abstract.replace("\n", "").strip()
                        abstract = " ".join(abstract.split())

                        pub_info_element = article.select_one(".gs_a")
                        pub_info = pub_info_element.text if pub_info_element else ""

                        pub_info_parsed = extract_data_from_publication_info(pub_info)

                        results.append({
                            "GGS_title": title,
                            "GGS_link": link,
                            "GGS_brief_abstract": abstract,
                            "GGS_publication_info": pub_info,
                            "GGS_authors": pub_info_parsed["authors"],
                            "GGS_journal": pub_info_parsed["journal"],
                            "GGS_year": pub_info_parsed["year"],
                            "GGS_publisher": pub_info_parsed["publisher"]
                        })

                time.sleep(random.uniform(1, 3))  # Random sleep to avoid being blocked

            else:
                print(f"ERROR: STATUS CODE {response.status_code}")
                break
        
        except Exception as e:
            print(f"An error occurred: {e}")
            break

    return results

def save_to_csv(data, filename="base_crawling_from_gg_scholar.csv"):
    with open(filename, "w", newline="", encoding="utf-8-sig") as csvfile:
        fieldnames = data[0].keys()
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)

        writer.writeheader()
        for row in data:
            writer.writerow(row)

    print(f"Data saved to {filename}")

def main():
    query = input("Enter your search query: ")
    num_pages = int(input("Enter the number of pages to scrape: "))
    
    use_time_filter = input("Do you want to filter by year? (y/n): ").strip().lower()
    start_year = None
    end_year = None

    if use_time_filter == 'y':
        start_year = input("Enter the start year (format: YYYY; for example: 2020): ")
        end_year = input("Enter the end year (format: YYYY; for example: 2025): ")

    results = scrape_gg_scholar(query, num_pages, start_year, end_year)

    print(f"Found {len(results)} results.")

    for i, result in enumerate(results):
        print(f"{i + 1}. {result['title']}")
        print(f"   Link: {result['link']}")
        print(f"   Brief Abstract: {result['brief_abstract']}")
        print(f"   Publication Info: {result['publication_info']}")
        print(f"   Authors: {result['authors']}")
        print(f"   Journal: {result['journal']}")
        print(f"   Year: {result['year']}")
        print(f"   Publisher: {result['publisher']}")
        print("=" * 100)

    save_option = input("Do you want to save the results to a CSV file? (y/n): ").strip().lower()
    if save_option == 'y':
        file_name = input("Enter the filename (default file name is 'base_crawling_from_gg_scholar.csv', enter fine name without extension): ")
        save_to_csv(results)

if __name__ == "__main__":
    main()
# The code is designed to scrape Google Scholar for academic articles based on a search query.