import time import json import requests import streamlit as st import os from urllib.parse import urlencode, urlparse, parse_qs st.set_page_config(page_title="IntelliChat - Trợ lý AI văn bản pháp luật Việt Nam", page_icon="./app/static/IntelliChat.png", layout="centered", initial_sidebar_state="collapsed") # ==== MÔI TRƯỜNG OAuth ==== FB_APP_ID = os.getenv("FB_APP_ID") FB_APP_SECRET = os.getenv("FB_APP_SECRET") FB_REDIRECT_URI = os.getenv("FB_REDIRECT_URI") FB_CLIENT_URL = os.getenv("FB_CLIENT_URL", "https://www.facebook.com") FB_API_URL = os.getenv("FB_API_URL", "https://graph.facebook.com") FB_BACKEND_URL = os.getenv("FB_BACKEND_URL") # ==== MODULE URL ==== routing_response_module = st.secrets["ViBidLQA_Routing_Module"] retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"] reranker_module = st.secrets["ViBidLQA_Rerank_Module"] abs_QA_module = st.secrets["ViBidLQA_AQA_Module"] url_api_question_classify_model = f"{routing_response_module}/query_classify" url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question" url_api_introduce_system_model = f"{routing_response_module}/about_me" url_api_retrieval_model = f"{retrieval_module}/search" url_api_reranker_model = f"{reranker_module}/rerank" url_api_generation_model = f"{abs_QA_module}/answer" url_api_extract_reference_model = f"{routing_response_module}/extract_references_unstream" # ========== STREAMLIT UI ========== with open("./static/styles.css") as f: st.markdown(f"", unsafe_allow_html=True) # ==== GIAO DIỆN CHÍNH - TABS ==== # tab1, tab2 = st.tabs(["🤖 ViBidLQA Chatbot", "🔐 Facebook OAuth"]) # ============================= # TAB 1: VIBIDLQA CHATBOT # ============================= # with tab1: if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc - sinh viên năm cuối ngành Khoa học Máy tính tại trường Đại học Sư phạm Kỹ thuật Hưng Yên. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}] # st.markdown(f""" #
# #
# """, unsafe_allow_html=True) # st.markdown("

ViBidLQA

", unsafe_allow_html=True) def classify_question(question): data = { "question": question } response = requests.post(url_api_question_classify_model, json=data) if response.status_code == 200: print(response) return response else: return f"Lỗi: {response.status_code} - {response.text}" def introduce_system(question): data = { "question": question } response = requests.post(url_api_introduce_system_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def response_unrelated_question(question): data = { "question": question } response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def retrieve_context(question, top_k=10): data = { "query": question, "top_k": top_k } response = requests.post(url_api_retrieval_model, json=data) if response.status_code == 200: results = response.json()["results"] return results else: return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}" def rerank_context(url_rerank_module, question, relevant_docs, top_k=5): data = { "question": question, "relevant_docs": relevant_docs, "top_k": top_k } response = requests.post(url_rerank_module, json=data) if response.status_code == 200: results = response.json()["reranked_docs"] return results else: return f"Lỗi tại Rerank module: {response.status_code} - {response.text}" def get_abstractive_answer(context, question): data = { "context": context, "question": question } response = requests.post(url_api_generation_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def get_references(context, question, answer): data = { "context": context, "question": question, "answer": answer } response = requests.post(url_api_extract_reference_model, json=data) if response.status_code == 200: return response.json()["refs"] else: return f"Lỗi tại module Reference Extractor: {response.status_code} - {response.text}" def generate_text_effect(answer): words = answer.split() for i in range(len(words)): time.sleep(0.03) yield " ".join(words[:i+1]) for message in st.session_state.messages: if message['role'] == 'assistant': avatar_class = "assistant-avatar" message_class = "assistant-message" avatar = './app/static/IntelliChat.png' else: avatar_class = "" message_class = "user-message" avatar = '' st.markdown(f"""
{message['content']}
""", unsafe_allow_html=True) if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'): st.markdown(f"""
{prompt}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'user', 'content': prompt}) message_placeholder = st.empty() full_response = "" classify_result = classify_question(question=prompt).json() print(f"The type of user query: {classify_result}") if classify_result == "BIDDING_RELATED": retrieved_context = retrieve_context(question=prompt, top_k=10) retrieved_context = [item['text'] for item in retrieved_context] reranked_context = rerank_context(url_rerank_module=url_api_reranker_model, question=prompt, relevant_docs=retrieved_context, top_k=5)[0] abs_answer = get_abstractive_answer(context=reranked_context, question=prompt) if isinstance(abs_answer, str): full_response = abs_answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in abs_answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass refs = st.expander("Tài liệu tham khảo", expanded=False) refs_list = get_references(context=reranked_context, question=prompt, answer=full_response) print(refs_list) refs.write(f"{refs_list}") elif classify_result == "ABOUT_CHATBOT": answer = introduce_system(question=prompt) if isinstance(answer, str): full_response = answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass else: answer = response_unrelated_question(question=prompt) if isinstance(answer, str): full_response = answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'assistant', 'content': full_response}) # ============================= # TAB 2: FACEBOOK OAUTH # ============================= # with tab2: # st.title("Đăng nhập Facebook để lấy Page Access Token") # # Tạo link login # login_url = f"{FB_BACKEND_URL}/facebook/login" # st.markdown(f"[👉 Bấm vào đây để đăng nhập Facebook]({login_url})") # st.info("Sau khi đăng nhập xong, bạn có thể quay lại ứng dụng này. Thông tin page đã được in ra ở backend.")