import time import json import requests import streamlit as st import os from urllib.parse import urlencode, urlparse, parse_qs st.set_page_config(page_title="ViBidLQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="collapsed") # ==== MÔI TRƯỜNG OAuth ==== FB_APP_ID = os.getenv("FB_APP_ID") FB_APP_SECRET = os.getenv("FB_APP_SECRET") FB_REDIRECT_URI = os.getenv("FB_REDIRECT_URI") FB_CLIENT_URL = os.getenv("FB_CLIENT_URL", "https://www.facebook.com") FB_API_URL = os.getenv("FB_API_URL", "https://graph.facebook.com") FB_BACKEND_URL = os.getenv("FB_BACKEND_URL") # ==== MODULE URL ==== routing_response_module = st.secrets["ViBidLQA_Routing_Module"] retrieval_module = st.secrets["ViBidLQA_Retrieval_Module"] reranker_module = st.secrets["ViBidLQA_Rerank_Module"] abs_QA_module = st.secrets["ViBidLQA_AQA_Module"] url_api_question_classify_model = f"{routing_response_module}/query_classify" url_api_unrelated_question_response_model = f"{routing_response_module}/response_unrelated_question" url_api_introduce_system_model = f"{routing_response_module}/about_me" url_api_retrieval_model = f"{retrieval_module}/search" url_api_reranker_model = f"{reranker_module}/rerank" url_api_generation_model = f"{abs_QA_module}/answer" # ========== STREAMLIT UI ========== with open("./static/styles.css") as f: st.markdown(f"", unsafe_allow_html=True) # ==== GIAO DIỆN CHÍNH - TABS ==== # tab1, tab2 = st.tabs(["🤖 ViBidLQA Chatbot", "🔐 Facebook OAuth"]) # ============================= # TAB 1: VIBIDLQA CHATBOT # ============================= # with tab1: if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc và các cộng sự. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}] st.markdown(f"""
""", unsafe_allow_html=True) st.markdown("

ViBidLQA

", unsafe_allow_html=True) def classify_question(question): data = { "question": question } response = requests.post(url_api_question_classify_model, json=data) if response.status_code == 200: print(response) return response else: return f"Lỗi: {response.status_code} - {response.text}" def introduce_system(question): data = { "question": question } response = requests.post(url_api_introduce_system_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def response_unrelated_question(question): data = { "question": question } response = requests.post(url_api_unrelated_question_response_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def retrieve_context(question, top_k=10): data = { "query": question, "top_k": top_k } response = requests.post(url_api_retrieval_model, json=data) if response.status_code == 200: results = response.json()["results"] return results else: return f"Lỗi tại Retrieval Module: {response.status_code} - {response.text}" def rerank_context(url_rerank_module, question, relevant_docs, top_k=5): data = { "question": question, "relevant_docs": relevant_docs, "top_k": top_k } response = requests.post(url_rerank_module, json=data) if response.status_code == 200: results = response.json()["reranked_docs"] return results else: return f"Lỗi tại Rerank module: {response.status_code} - {response.text}" def get_abstractive_answer(question): retrieved_context = retrieve_context(question=question) retrieved_context = [item['text'] for item in retrieved_context] reranked_context = rerank_context(url_rerank_module=url_api_reranker_model, question=question, relevant_docs=retrieved_context, top_k=5)[0] data = { "context": reranked_context, "question": question } response = requests.post(url_api_generation_model, json=data, stream=True) if response.status_code == 200: return response else: return f"Lỗi: {response.status_code} - {response.text}" def generate_text_effect(answer): words = answer.split() for i in range(len(words)): time.sleep(0.03) yield " ".join(words[:i+1]) for message in st.session_state.messages: if message['role'] == 'assistant': avatar_class = "assistant-avatar" message_class = "assistant-message" avatar = './app/static/ai.jpg' else: avatar_class = "" message_class = "user-message" avatar = '' st.markdown(f"""
{message['content']}
""", unsafe_allow_html=True) if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'): st.markdown(f"""
{prompt}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'user', 'content': prompt}) message_placeholder = st.empty() full_response = "" try: classify_result = classify_question(question=prompt).json() print(f"The type of user query: {classify_result}") if classify_result == "BIDDING_RELATED": abs_answer = get_abstractive_answer(question=prompt) if isinstance(abs_answer, str): full_response = abs_answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in abs_answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass elif classify_result == "ABOUT_CHATBOT": answer = introduce_system(question=prompt) if isinstance(answer, str): full_response = answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass else: answer = response_unrelated_question(question=prompt) if isinstance(answer, str): full_response = answer message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in answer.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass except Exception as e: full_response = "Hiện tại trợ lý AI đang nghỉ xíu để sạc pin 🔌. Bạn hãy quay lại sau nhé!" message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'assistant', 'content': full_response}) # ============================= # TAB 2: FACEBOOK OAUTH # ============================= # with tab2: # st.title("Đăng nhập Facebook để lấy Page Access Token") # # Tạo link login # login_url = f"{FB_BACKEND_URL}/facebook/login" # st.markdown(f"[👉 Bấm vào đây để đăng nhập Facebook]({login_url})") # st.info("Sau khi đăng nhập xong, bạn có thể quay lại ứng dụng này. Thông tin page đã được in ra ở backend.")