import time import json import requests import streamlit as st st.set_page_config(page_title="ViBidLQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="wide", initial_sidebar_state="expanded") with open("./static/styles.css") as f: st.markdown(f"", unsafe_allow_html=True) if 'messages' not in st.session_state: st.session_state.messages = [{'role': 'assistant', 'content': "Xin chào. Tôi là trợ lý AI văn bản luật Đấu thầu Việt Nam được phát triển bởi Nguyễn Trường Phúc. Rất vui khi được hỗ trợ bạn trong các vấn đề pháp lý tại Việt Nam!"}] st.markdown(f"""
""", unsafe_allow_html=True) st.markdown("

The ViBidLQA System

", unsafe_allow_html=True) url_api_retrieval_model = st.sidebar.text_input(label="URL API Retrieval model:") url_api_extraction_model = st.sidebar.text_input(label="URL API Extraction model:") url_api_generation_model = st.sidebar.text_input(label="URL API Generation model:") answering_method = st.sidebar.selectbox(options=['Extraction', 'Generation'], label='Chọn mô hình trả lời câu hỏi:', index=0) if answering_method == 'Generation': print('Switching to generative model...') print('Loading generative model...') if answering_method == 'Extraction': print('Switching to extraction model...') print('Loading extraction model...') def retrieve_context(question, top_k=10): data = { "query": question, "top_k": top_k } response = requests.post(url_api_retrieval_model, json=data) if response.status_code == 200: results = response.json()["results"] print(f"Văn bản pháp luật được truy hồi: {results[0]['text']}") print("="*100) return results[0]["text"] else: return f"Lỗi: {response.status_code} - {response.text}" def get_abstractive_answer(question): context = retrieve_context(question=question) data = { "context": context, "question": question } response = requests.post(url_api_generation_model, json=data) if response.status_code == 200: result = response.json() return result["answer"] else: return f"Lỗi: {response.status_code} - {response.text}" def get_abstractive_answer_stream(question): context = retrieve_context(question=question) data = { "context": context, "question": question } # Sử dụng requests với stream=True response = requests.post(url_api_generation_model, json=data, stream=True) if response.status_code == 200: # Trả về response để xử lý streaming return response else: return f"Lỗi: {response.status_code} - {response.text}" def generate_text_effect(answer): words = answer.split() for i in range(len(words)): time.sleep(0.03) yield " ".join(words[:i+1]) def get_extractive_answer(question, stride=20, max_length=256, n_best=50, max_answer_length=512): context = retrieve_context(question=question) data = { "context": context, "question": question, "stride": stride, "max_length": max_length, "n_best": n_best, "max_answer_length": max_answer_length } response = requests.post(url_api_extraction_model, json=data) if response.status_code == 200: result = response.json() return result["best_answer"] else: return f"Lỗi: {response.status_code} - {response.text}" for message in st.session_state.messages: if message['role'] == 'assistant': avatar_class = "assistant-avatar" message_class = "assistant-message" avatar = './app/static/ai.jpg' else: avatar_class = "user-avatar" message_class = "user-message" avatar = './app/static/human.png' st.markdown(f"""
{message['content']}
""", unsafe_allow_html=True) if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'): st.markdown(f"""
{prompt}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'user', 'content': prompt}) message_placeholder = st.empty() full_response = "" if answering_method == 'Generation': response_stream = get_abstractive_answer_stream(question=prompt) if isinstance(response_stream, str): full_response = response_stream message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) else: full_response = "" for line in response_stream.iter_lines(): if line: line = line.decode('utf-8') if line.startswith('data: '): data_str = line[6:] if data_str == '[DONE]': break try: data = json.loads(data_str) token = data.get('token', '') full_response += token message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) except json.JSONDecodeError: pass else: ext_answer = get_extractive_answer(question=prompt) for word in generate_text_effect(ext_answer): full_response = word message_placeholder.markdown(f"""
{full_response}●
""", unsafe_allow_html=True) message_placeholder.markdown(f"""
{full_response}
""", unsafe_allow_html=True) st.session_state.messages.append({'role': 'assistant', 'content': full_response})