Spaces:
Running
Running
File size: 5,304 Bytes
f912d04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import time
import requests
import streamlit as st
st.set_page_config(page_title="ViBidLawQA - Trợ lý AI hỗ trợ hỏi đáp luật Việt Nam", page_icon="./app/static/ai.jpg", layout="centered", initial_sidebar_state="expanded")
with open("./static/styles.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
if 'messages' not in st.session_state:
st.session_state.messages = []
st.markdown(f"""
<div class=logo_area>
<img src="./app/static/ai.jpg"/>
</div>
""", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>ViBidLQA Bot</h2>", unsafe_allow_html=True)
url_api_extraction_model = st.sidebar.text_input(label="URL API Extraction model:")
url_api_generation_model = st.sidebar.text_input(label="URL API Generation model:")
answering_method = st.sidebar.selectbox(options=['Extraction', 'Generation'], label='Chọn mô hình trả lời câu hỏi:', index=0)
context = st.sidebar.text_area(label='Nội dung văn bản pháp luật Việt Nam:', placeholder='Vui lòng nhập nội dung văn bản pháp luật Việt Nam tại đây...', height=500)
if answering_method == 'Generation':
print('Switching to generative model...')
print('Loading generative model...')
if answering_method == 'Extraction':
print('Switching to extraction model...')
print('Loading extraction model...')
def get_abstractive_answer(context, question):
data = {
"context": context,
"question": question
}
response = requests.post(url_api_generation_model, json=data)
if response.status_code == 200:
result = response.json()
return result["answer"]
else:
return f"Lỗi: {response.status_code} - {response.text}"
def generate_text_effect(answer):
words = answer.split()
for i in range(len(words)):
time.sleep(0.03)
yield " ".join(words[:i+1])
def get_extractive_answer(context, question, stride=20, max_length=256, n_best=50, max_answer_length=512):
data = {
"context": context,
"question": question,
"stride": stride,
"max_length": max_length,
"n_best": n_best,
"max_answer_length": max_answer_length
}
response = requests.post(url_api_extraction_model, json=data)
if response.status_code == 200:
result = response.json()
return result["best_answer"]
else:
return f"Lỗi: {response.status_code} - {response.text}"
for message in st.session_state.messages:
if message['role'] == 'assistant':
avatar_class = "assistant-avatar"
message_class = "assistant-message"
avatar = './app/static/ai.jpg'
else:
avatar_class = "user-avatar"
message_class = "user-message"
avatar = './app/static/human.png'
st.markdown(f"""
<div class="{message_class}">
<img src="{avatar}" class="{avatar_class}" />
<div class="stMarkdown">{message['content']}</div>
</div>
""", unsafe_allow_html=True)
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
st.markdown(f"""
<div class="user-message">
<img src="./app/static/human.png" class="user-avatar" />
<div class="stMarkdown">{prompt}</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'user', 'content': prompt})
message_placeholder = st.empty()
for _ in range(2):
for dots in ["●", "●●", "●●●"]:
time.sleep(0.2)
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">{dots}</div>
</div>
""", unsafe_allow_html=True)
full_response = ""
if answering_method == 'Generation':
abs_answer = get_abstractive_answer(context=context, question=prompt)
for word in generate_text_effect(abs_answer):
full_response = word
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
else:
ext_answer = get_extractive_answer(context=context, question=prompt)
for word in generate_text_effect(ext_answer):
full_response = word
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.jpg" class="assistant-avatar" />
<div class="stMarkdown">
{full_response}
</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'assistant', 'content': full_response}) |