Fixed md loop
Browse files- .ipynb_checkpoints/README-checkpoint.md +13 -0
- .ipynb_checkpoints/app-checkpoint.py +189 -0
- .ipynb_checkpoints/requirements-checkpoint.txt +4 -0
- .ipynb_checkpoints/utils-checkpoint.py +14 -0
- app.py +102 -325
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Deep Reinforcement Learning Leaderboard
|
3 |
+
emoji: π
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 5.12.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
startup_duration_timeout: 2h
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
.ipynb_checkpoints/app-checkpoint.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
7 |
+
from huggingface_hub.repocard import metadata_load
|
8 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
9 |
+
from tqdm.contrib.concurrent import thread_map
|
10 |
+
from utils import *
|
11 |
+
|
12 |
+
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data"
|
13 |
+
DATASET_REPO_ID = "huggingface-projects/drlc-leaderboard-data"
|
14 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
15 |
+
|
16 |
+
block = gr.Blocks()
|
17 |
+
api = HfApi(token=HF_TOKEN)
|
18 |
+
|
19 |
+
# Define RL environments
|
20 |
+
rl_envs = [
|
21 |
+
{"rl_env_beautiful": "LunarLander-v2 π", "rl_env": "LunarLander-v2", "video_link": "", "global": None},
|
22 |
+
{"rl_env_beautiful": "CartPole-v1", "rl_env": "CartPole-v1", "video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4", "global": None},
|
23 |
+
{"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ", "rl_env": "FrozenLake-v1-4x4-no_slippery", "video_link": "", "global": None},
|
24 |
+
{"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ", "rl_env": "FrozenLake-v1-8x8-no_slippery", "video_link": "", "global": None},
|
25 |
+
{"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ", "rl_env": "FrozenLake-v1-4x4", "video_link": "", "global": None},
|
26 |
+
{"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ", "rl_env": "FrozenLake-v1-8x8", "video_link": "", "global": None},
|
27 |
+
{"rl_env_beautiful": "Taxi-v3 π", "rl_env": "Taxi-v3", "video_link": "", "global": None},
|
28 |
+
{"rl_env_beautiful": "CarRacing-v0 ποΈ", "rl_env": "CarRacing-v0", "video_link": "", "global": None},
|
29 |
+
{"rl_env_beautiful": "CarRacing-v2 ποΈ", "rl_env": "CarRacing-v2", "video_link": "", "global": None},
|
30 |
+
{"rl_env_beautiful": "MountainCar-v0 β°οΈ", "rl_env": "MountainCar-v0", "video_link": "", "global": None},
|
31 |
+
{"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ", "rl_env": "SpaceInvadersNoFrameskip-v4", "video_link": "", "global": None},
|
32 |
+
{"rl_env_beautiful": "PongNoFrameskip-v4 πΎ", "rl_env": "PongNoFrameskip-v4", "video_link": "", "global": None},
|
33 |
+
{"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±", "rl_env": "BreakoutNoFrameskip-v4", "video_link": "", "global": None},
|
34 |
+
{"rl_env_beautiful": "QbertNoFrameskip-v4 π¦", "rl_env": "QbertNoFrameskip-v4", "video_link": "", "global": None},
|
35 |
+
{"rl_env_beautiful": "BipedalWalker-v3", "rl_env": "BipedalWalker-v3", "video_link": "", "global": None},
|
36 |
+
{"rl_env_beautiful": "Walker2DBulletEnv-v0", "rl_env": "Walker2DBulletEnv-v0", "video_link": "", "global": None},
|
37 |
+
{"rl_env_beautiful": "AntBulletEnv-v0", "rl_env": "AntBulletEnv-v0", "video_link": "", "global": None},
|
38 |
+
{"rl_env_beautiful": "HalfCheetahBulletEnv-v0", "rl_env": "HalfCheetahBulletEnv-v0", "video_link": "", "global": None},
|
39 |
+
{"rl_env_beautiful": "PandaReachDense-v2", "rl_env": "PandaReachDense-v2", "video_link": "", "global": None},
|
40 |
+
{"rl_env_beautiful": "PandaReachDense-v3", "rl_env": "PandaReachDense-v3", "video_link": "", "global": None},
|
41 |
+
{"rl_env_beautiful": "Pixelcopter-PLE-v0", "rl_env": "Pixelcopter-PLE-v0", "video_link": "", "global": None}
|
42 |
+
]
|
43 |
+
|
44 |
+
# -------------------- Utility Functions --------------------
|
45 |
+
|
46 |
+
def restart():
|
47 |
+
"""Restart the Hugging Face Space."""
|
48 |
+
print("RESTARTING SPACE...")
|
49 |
+
api.restart_space(repo_id="huggingface-projects/Deep-Reinforcement-Learning-Leaderboard")
|
50 |
+
|
51 |
+
def download_leaderboard_dataset():
|
52 |
+
"""Download leaderboard dataset once at startup."""
|
53 |
+
print("Downloading leaderboard dataset...")
|
54 |
+
return snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
55 |
+
|
56 |
+
def get_metadata(model_id):
|
57 |
+
"""Fetch metadata for a given model from Hugging Face."""
|
58 |
+
try:
|
59 |
+
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
60 |
+
return metadata_load(readme_path)
|
61 |
+
except requests.exceptions.HTTPError:
|
62 |
+
return None # 404 README.md not found
|
63 |
+
|
64 |
+
def parse_metrics_accuracy(meta):
|
65 |
+
"""Extract accuracy metrics from metadata."""
|
66 |
+
if "model-index" not in meta:
|
67 |
+
return None
|
68 |
+
result = meta["model-index"][0]["results"]
|
69 |
+
metrics = result[0]["metrics"]
|
70 |
+
return metrics[0]["value"]
|
71 |
+
|
72 |
+
def parse_rewards(accuracy):
|
73 |
+
"""Extract mean and std rewards from accuracy metrics."""
|
74 |
+
default_std = -1000
|
75 |
+
default_reward = -1000
|
76 |
+
if accuracy is not None:
|
77 |
+
parsed = str(accuracy).split('+/-')
|
78 |
+
mean_reward = float(parsed[0].strip()) if parsed[0] else default_reward
|
79 |
+
std_reward = float(parsed[1].strip()) if len(parsed) > 1 else 0
|
80 |
+
else:
|
81 |
+
mean_reward, std_reward = default_reward, default_std
|
82 |
+
return mean_reward, std_reward
|
83 |
+
|
84 |
+
def get_model_ids(rl_env):
|
85 |
+
"""Retrieve models matching the given RL environment."""
|
86 |
+
return [x.modelId for x in api.list_models(filter=rl_env)]
|
87 |
+
|
88 |
+
def update_leaderboard_dataset_parallel(rl_env, path):
|
89 |
+
"""Parallelized update of leaderboard dataset for a given RL environment."""
|
90 |
+
model_ids = get_model_ids(rl_env)
|
91 |
+
|
92 |
+
def process_model(model_id):
|
93 |
+
meta = get_metadata(model_id)
|
94 |
+
if not meta:
|
95 |
+
return None
|
96 |
+
user_id = model_id.split('/')[0]
|
97 |
+
row = {
|
98 |
+
"User": user_id,
|
99 |
+
"Model": model_id,
|
100 |
+
"Results": None,
|
101 |
+
"Mean Reward": None,
|
102 |
+
"Std Reward": None
|
103 |
+
}
|
104 |
+
accuracy = parse_metrics_accuracy(meta)
|
105 |
+
mean_reward, std_reward = parse_rewards(accuracy)
|
106 |
+
row["Results"] = mean_reward - std_reward
|
107 |
+
row["Mean Reward"] = mean_reward
|
108 |
+
row["Std Reward"] = std_reward
|
109 |
+
return row
|
110 |
+
|
111 |
+
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
112 |
+
data = [row for row in data if row is not None]
|
113 |
+
|
114 |
+
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
115 |
+
ranked_dataframe.to_csv(os.path.join(path, f"{rl_env}.csv"), index=False)
|
116 |
+
|
117 |
+
return ranked_dataframe
|
118 |
+
|
119 |
+
def rank_dataframe(dataframe):
|
120 |
+
"""Sort models by results and assign ranking."""
|
121 |
+
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
122 |
+
dataframe.insert(0, 'Ranking', range(1, len(dataframe) + 1))
|
123 |
+
return dataframe
|
124 |
+
|
125 |
+
def run_update_dataset():
|
126 |
+
"""Update dataset periodically using the scheduler."""
|
127 |
+
path_ = download_leaderboard_dataset()
|
128 |
+
for env in rl_envs:
|
129 |
+
update_leaderboard_dataset_parallel(env["rl_env"], path_)
|
130 |
+
|
131 |
+
print("Uploading updated dataset...")
|
132 |
+
api.upload_folder(
|
133 |
+
folder_path=path_,
|
134 |
+
repo_id=DATASET_REPO_ID,
|
135 |
+
repo_type="dataset",
|
136 |
+
commit_message="Update dataset"
|
137 |
+
)
|
138 |
+
|
139 |
+
def filter_data(rl_env, path, user_id):
|
140 |
+
"""Filter dataset for a specific user ID."""
|
141 |
+
data_df = pd.read_csv(os.path.join(path, f"{rl_env}.csv"))
|
142 |
+
return data_df[data_df["User"] == user_id]
|
143 |
+
|
144 |
+
# -------------------- Gradio UI --------------------
|
145 |
+
|
146 |
+
print("Initializing dataset...")
|
147 |
+
path_ = download_leaderboard_dataset()
|
148 |
+
|
149 |
+
with block:
|
150 |
+
gr.Markdown("""
|
151 |
+
# π Deep Reinforcement Learning Course Leaderboard π
|
152 |
+
|
153 |
+
This leaderboard displays trained agents from the [Deep Reinforcement Learning Course](https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt).
|
154 |
+
|
155 |
+
**Models are ranked using `mean_reward - std_reward`.**
|
156 |
+
|
157 |
+
If you can't find your model, please wait for the next update (every 2 hours).
|
158 |
+
""")
|
159 |
+
|
160 |
+
grpath = gr.State(path_) # Store dataset path as a state variable
|
161 |
+
|
162 |
+
for env in rl_envs:
|
163 |
+
with gr.TabItem(env["rl_env_beautiful"]):
|
164 |
+
gr.Markdown(f"## {env['rl_env_beautiful']}")
|
165 |
+
user_id = gr.Textbox(label="Your user ID")
|
166 |
+
search_btn = gr.Button("Search π")
|
167 |
+
reset_btn = gr.Button("Clear Search")
|
168 |
+
env_state = gr.State(env["rl_env"]) # Store environment name as a state variable
|
169 |
+
|
170 |
+
gr_dataframe = gr.Dataframe(
|
171 |
+
value=pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")),
|
172 |
+
headers=["Ranking π", "User π€", "Model π€", "Results", "Mean Reward", "Std Reward"],
|
173 |
+
datatype=["number", "markdown", "markdown", "number", "number", "number"],
|
174 |
+
row_count=(100, 'fixed')
|
175 |
+
)
|
176 |
+
|
177 |
+
# β
Corrected: Use `gr.State()` for env["rl_env"] and `grpath`
|
178 |
+
search_btn.click(fn=filter_data, inputs=[env_state, grpath, user_id], outputs=gr_dataframe)
|
179 |
+
reset_btn.click(fn=lambda: pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")), inputs=[], outputs=gr_dataframe)
|
180 |
+
|
181 |
+
|
182 |
+
# -------------------- Scheduler --------------------
|
183 |
+
|
184 |
+
scheduler = BackgroundScheduler()
|
185 |
+
scheduler.add_job(run_update_dataset, 'interval', hours=2) # Update dataset every 2 hours
|
186 |
+
scheduler.add_job(restart, 'interval', hours=3) # Restart space every 3 hours
|
187 |
+
scheduler.start()
|
188 |
+
|
189 |
+
block.launch()
|
.ipynb_checkpoints/requirements-checkpoint.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler==3.10.1
|
2 |
+
gradio==4.0
|
3 |
+
httpx==0.24.0
|
4 |
+
tqdm
|
.ipynb_checkpoints/utils-checkpoint.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on Omar Sanseviero work
|
2 |
+
# Make model clickable link
|
3 |
+
def make_clickable_model(model_name):
|
4 |
+
# remove user from model name
|
5 |
+
model_name_show = ' '.join(model_name.split('/')[1:])
|
6 |
+
|
7 |
+
link = "https://huggingface.co/" + model_name
|
8 |
+
return f'<a target="_blank" href="{link}">{model_name_show}</a>'
|
9 |
+
|
10 |
+
# Make user clickable link
|
11 |
+
def make_clickable_user(user_id):
|
12 |
+
link = "https://huggingface.co/" + user_id
|
13 |
+
return f'<a target="_blank" href="{link}">{user_id}</a>'
|
14 |
+
|
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import os
|
2 |
import json
|
3 |
import requests
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import pandas as pd
|
7 |
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
8 |
from huggingface_hub.repocard import metadata_load
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
-
|
11 |
from tqdm.contrib.concurrent import thread_map
|
12 |
-
|
13 |
from utils import *
|
14 |
|
15 |
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data"
|
@@ -19,394 +16,174 @@ HF_TOKEN = os.environ.get("HF_TOKEN")
|
|
19 |
block = gr.Blocks()
|
20 |
api = HfApi(token=HF_TOKEN)
|
21 |
|
22 |
-
#
|
23 |
rl_envs = [
|
24 |
-
{
|
25 |
-
"rl_env_beautiful": "
|
26 |
-
"rl_env": "
|
27 |
-
"video_link": "",
|
28 |
-
"global": None
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"rl_env_beautiful": "
|
32 |
-
"rl_env": "
|
33 |
-
"
|
34 |
-
"global": None
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"rl_env_beautiful": "
|
38 |
-
"rl_env": "
|
39 |
-
"video_link": "",
|
40 |
-
"global": None
|
41 |
-
},
|
42 |
-
{
|
43 |
-
"rl_env_beautiful": "
|
44 |
-
"rl_env": "
|
45 |
-
"video_link": "",
|
46 |
-
"global": None
|
47 |
-
},
|
48 |
-
{
|
49 |
-
"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ",
|
50 |
-
"rl_env": "FrozenLake-v1-4x4",
|
51 |
-
"video_link": "",
|
52 |
-
"global": None
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ",
|
56 |
-
"rl_env": "FrozenLake-v1-8x8",
|
57 |
-
"video_link": "",
|
58 |
-
"global": None
|
59 |
-
},
|
60 |
-
{
|
61 |
-
"rl_env_beautiful": "Taxi-v3 π",
|
62 |
-
"rl_env": "Taxi-v3",
|
63 |
-
"video_link": "",
|
64 |
-
"global": None
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"rl_env_beautiful": "CarRacing-v0 ποΈ",
|
68 |
-
"rl_env": "CarRacing-v0",
|
69 |
-
"video_link": "",
|
70 |
-
"global": None
|
71 |
-
},
|
72 |
-
{
|
73 |
-
"rl_env_beautiful": "CarRacing-v2 ποΈ",
|
74 |
-
"rl_env": "CarRacing-v2",
|
75 |
-
"video_link": "",
|
76 |
-
"global": None
|
77 |
-
},
|
78 |
-
{
|
79 |
-
"rl_env_beautiful": "MountainCar-v0 β°οΈ",
|
80 |
-
"rl_env": "MountainCar-v0",
|
81 |
-
"video_link": "",
|
82 |
-
"global": None
|
83 |
-
},
|
84 |
-
{
|
85 |
-
"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ",
|
86 |
-
"rl_env": "SpaceInvadersNoFrameskip-v4",
|
87 |
-
"video_link": "",
|
88 |
-
"global": None
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"rl_env_beautiful": "PongNoFrameskip-v4 πΎ",
|
92 |
-
"rl_env": "PongNoFrameskip-v4",
|
93 |
-
"video_link": "",
|
94 |
-
"global": None
|
95 |
-
},
|
96 |
-
{
|
97 |
-
"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±",
|
98 |
-
"rl_env": "BreakoutNoFrameskip-v4",
|
99 |
-
"video_link": "",
|
100 |
-
"global": None
|
101 |
-
},
|
102 |
-
{
|
103 |
-
"rl_env_beautiful": "QbertNoFrameskip-v4 π¦",
|
104 |
-
"rl_env": "QbertNoFrameskip-v4",
|
105 |
-
"video_link": "",
|
106 |
-
"global": None
|
107 |
-
},
|
108 |
-
{
|
109 |
-
"rl_env_beautiful": "BipedalWalker-v3",
|
110 |
-
"rl_env": "BipedalWalker-v3",
|
111 |
-
"video_link": "",
|
112 |
-
"global": None
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"rl_env_beautiful": "Walker2DBulletEnv-v0",
|
116 |
-
"rl_env": "Walker2DBulletEnv-v0",
|
117 |
-
"video_link": "",
|
118 |
-
"global": None
|
119 |
-
},
|
120 |
-
{
|
121 |
-
"rl_env_beautiful": "AntBulletEnv-v0",
|
122 |
-
"rl_env": "AntBulletEnv-v0",
|
123 |
-
"video_link": "",
|
124 |
-
"global": None
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"rl_env_beautiful": "HalfCheetahBulletEnv-v0",
|
128 |
-
"rl_env": "HalfCheetahBulletEnv-v0",
|
129 |
-
"video_link": "",
|
130 |
-
"global": None
|
131 |
-
},
|
132 |
-
{
|
133 |
-
"rl_env_beautiful": "PandaReachDense-v2",
|
134 |
-
"rl_env": "PandaReachDense-v2",
|
135 |
-
"video_link": "",
|
136 |
-
"global": None
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"rl_env_beautiful": "PandaReachDense-v3",
|
140 |
-
"rl_env": "PandaReachDense-v3",
|
141 |
-
"video_link": "",
|
142 |
-
"global": None
|
143 |
-
},
|
144 |
-
{
|
145 |
-
"rl_env_beautiful": "Pixelcopter-PLE-v0",
|
146 |
-
"rl_env": "Pixelcopter-PLE-v0",
|
147 |
-
"video_link": "",
|
148 |
-
"global": None
|
149 |
-
}
|
150 |
]
|
151 |
|
|
|
|
|
152 |
def restart():
|
153 |
-
|
|
|
154 |
api.restart_space(repo_id="huggingface-projects/Deep-Reinforcement-Learning-Leaderboard")
|
155 |
|
|
|
|
|
|
|
|
|
|
|
156 |
def get_metadata(model_id):
|
|
|
157 |
try:
|
158 |
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
159 |
return metadata_load(readme_path)
|
160 |
except requests.exceptions.HTTPError:
|
161 |
-
# 404 README.md not found
|
162 |
-
|
163 |
-
|
164 |
def parse_metrics_accuracy(meta):
|
|
|
165 |
if "model-index" not in meta:
|
166 |
return None
|
167 |
result = meta["model-index"][0]["results"]
|
168 |
metrics = result[0]["metrics"]
|
169 |
-
|
170 |
-
return accuracy
|
171 |
|
172 |
-
# We keep the worst case episode
|
173 |
def parse_rewards(accuracy):
|
|
|
174 |
default_std = -1000
|
175 |
-
default_reward
|
176 |
-
if accuracy
|
177 |
-
|
178 |
-
|
179 |
-
if len(parsed)>1
|
180 |
-
mean_reward = float(parsed[0].strip())
|
181 |
-
std_reward = float(parsed[1].strip())
|
182 |
-
elif len(parsed)==1: #only mean reward
|
183 |
-
mean_reward = float(parsed[0].strip())
|
184 |
-
std_reward = float(0)
|
185 |
-
else:
|
186 |
-
mean_reward = float(default_std)
|
187 |
-
std_reward = float(default_reward)
|
188 |
-
|
189 |
else:
|
190 |
-
mean_reward =
|
191 |
-
std_reward = float(default_reward)
|
192 |
return mean_reward, std_reward
|
193 |
|
194 |
-
|
195 |
def get_model_ids(rl_env):
|
196 |
-
|
197 |
-
|
198 |
-
model_ids = [x.modelId for x in models]
|
199 |
-
return model_ids
|
200 |
|
201 |
-
# Parralelized version
|
202 |
def update_leaderboard_dataset_parallel(rl_env, path):
|
203 |
-
|
204 |
model_ids = get_model_ids(rl_env)
|
205 |
|
206 |
def process_model(model_id):
|
207 |
meta = get_metadata(model_id)
|
208 |
-
|
209 |
-
if meta is None:
|
210 |
return None
|
211 |
user_id = model_id.split('/')[0]
|
212 |
-
row = {
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
|
|
215 |
accuracy = parse_metrics_accuracy(meta)
|
216 |
mean_reward, std_reward = parse_rewards(accuracy)
|
217 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
218 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
219 |
row["Results"] = mean_reward - std_reward
|
220 |
row["Mean Reward"] = mean_reward
|
221 |
row["Std Reward"] = std_reward
|
222 |
return row
|
223 |
|
224 |
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
225 |
-
|
226 |
-
# Filter out None results (models with no metadata)
|
227 |
data = [row for row in data if row is not None]
|
228 |
|
229 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
230 |
-
|
231 |
-
file_path = path + "/" + rl_env + ".csv"
|
232 |
-
new_history.to_csv(file_path, index=False)
|
233 |
-
|
234 |
-
return ranked_dataframe
|
235 |
-
|
236 |
-
|
237 |
-
def update_leaderboard_dataset(rl_env, path):
|
238 |
-
# Get model ids associated with rl_env
|
239 |
-
model_ids = get_model_ids(rl_env)
|
240 |
-
data = []
|
241 |
-
for model_id in model_ids:
|
242 |
-
"""
|
243 |
-
readme_path = hf_hub_download(model_id, filename="README.md")
|
244 |
-
meta = metadata_load(readme_path)
|
245 |
-
"""
|
246 |
-
meta = get_metadata(model_id)
|
247 |
-
#LOADED_MODEL_METADATA[model_id] = meta if meta is not None else ''
|
248 |
-
if meta is None:
|
249 |
-
continue
|
250 |
-
user_id = model_id.split('/')[0]
|
251 |
-
row = {}
|
252 |
-
row["User"] = user_id
|
253 |
-
row["Model"] = model_id
|
254 |
-
accuracy = parse_metrics_accuracy(meta)
|
255 |
-
mean_reward, std_reward = parse_rewards(accuracy)
|
256 |
-
mean_reward = mean_reward if not pd.isna(mean_reward) else 0
|
257 |
-
std_reward = std_reward if not pd.isna(std_reward) else 0
|
258 |
-
row["Results"] = mean_reward - std_reward
|
259 |
-
row["Mean Reward"] = mean_reward
|
260 |
-
row["Std Reward"] = std_reward
|
261 |
-
data.append(row)
|
262 |
-
|
263 |
-
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
264 |
-
new_history = ranked_dataframe
|
265 |
-
file_path = path + "/" + rl_env + ".csv"
|
266 |
-
new_history.to_csv(file_path, index=False)
|
267 |
|
268 |
return ranked_dataframe
|
269 |
|
270 |
-
def download_leaderboard_dataset():
|
271 |
-
path = snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
272 |
-
return path
|
273 |
-
|
274 |
-
def get_data(rl_env, path) -> pd.DataFrame:
|
275 |
-
"""
|
276 |
-
Get data from rl_env
|
277 |
-
:return: data as a pandas DataFrame
|
278 |
-
"""
|
279 |
-
csv_path = path + "/" + rl_env + ".csv"
|
280 |
-
data = pd.read_csv(csv_path)
|
281 |
-
|
282 |
-
for index, row in data.iterrows():
|
283 |
-
user_id = row["User"]
|
284 |
-
data.loc[index, "User"] = make_clickable_user(user_id)
|
285 |
-
model_id = row["Model"]
|
286 |
-
data.loc[index, "Model"] = make_clickable_model(model_id)
|
287 |
-
|
288 |
-
return data
|
289 |
-
|
290 |
-
def get_data_no_html(rl_env, path) -> pd.DataFrame:
|
291 |
-
"""
|
292 |
-
Get data from rl_env
|
293 |
-
:return: data as a pandas DataFrame
|
294 |
-
"""
|
295 |
-
csv_path = path + "/" + rl_env + ".csv"
|
296 |
-
data = pd.read_csv(csv_path)
|
297 |
-
|
298 |
-
return data
|
299 |
-
|
300 |
def rank_dataframe(dataframe):
|
|
|
301 |
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
302 |
-
|
303 |
-
dataframe.insert(0, 'Ranking', [i for i in range(1,len(dataframe)+1)])
|
304 |
-
else:
|
305 |
-
dataframe['Ranking'] = [i for i in range(1,len(dataframe)+1)]
|
306 |
return dataframe
|
307 |
|
308 |
-
|
309 |
def run_update_dataset():
|
|
|
310 |
path_ = download_leaderboard_dataset()
|
311 |
-
for
|
312 |
-
rl_env
|
313 |
-
update_leaderboard_dataset_parallel(rl_env["rl_env"], path_)
|
314 |
|
|
|
315 |
api.upload_folder(
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
|
|
320 |
|
321 |
def filter_data(rl_env, path, user_id):
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
for index, row in models.iterrows():
|
327 |
-
user_id = row["User"]
|
328 |
-
models.loc[index, "User"] = make_clickable_user(user_id)
|
329 |
-
model_id = row["Model"]
|
330 |
-
models.loc[index, "Model"] = make_clickable_model(model_id)
|
331 |
-
|
332 |
|
333 |
-
|
334 |
|
335 |
-
|
|
|
336 |
|
337 |
with block:
|
338 |
-
gr.Markdown(
|
339 |
-
# π
|
340 |
-
|
341 |
-
This is the leaderboard of trained agents during the <a href="https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt">Deep Reinforcement Learning Course</a>. A free course from beginner to expert.
|
342 |
-
|
343 |
-
### We only display the best 100 models
|
344 |
-
If you want to **find yours, type your user id and click on Search my models.**
|
345 |
-
You **can click on the model's name** to be redirected to its model card, including documentation.
|
346 |
-
|
347 |
-
### How are the results calculated?
|
348 |
-
We use **lower bound result to sort the models: mean_reward - std_reward.**
|
349 |
|
350 |
-
|
351 |
-
|
|
|
352 |
|
353 |
-
|
354 |
-
π€ You want to try to train your agents? <a href="https://huggingface.co/deep-rl-course/unit0/introduction?fw=pt" target="_blank"> Check the Hugging Face free Deep Reinforcement Learning Course π€ </a>.
|
355 |
-
|
356 |
-
π§ There is an **environment missing?** Please open an issue.
|
357 |
""")
|
358 |
-
path_ = download_leaderboard_dataset()
|
359 |
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
reset_btn = gr.Button("Clear my search")
|
381 |
-
env = gr.State(rl_env["rl_env"])
|
382 |
-
grpath = gr.State(path_)
|
383 |
-
with gr.Row():
|
384 |
-
gr_dataframe = gr.components.Dataframe(value=get_data(rl_env["rl_env"], path_), headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], row_count=(100, 'fixed'))
|
385 |
-
|
386 |
-
with gr.Row():
|
387 |
-
#gr_search_dataframe = gr.components.Dataframe(headers=["Ranking π", "User π€", "Model id π€", "Results", "Mean Reward", "Std Reward"], datatype=["number", "markdown", "markdown", "number", "number", "number"], visible=False)
|
388 |
-
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data")
|
389 |
|
390 |
-
with gr.Row():
|
391 |
-
search_btn.click(fn=filter_data, inputs=[env, grpath, user_id], outputs=gr_dataframe, api_name="filter_data")
|
392 |
-
reset_btn.click(fn=get_data, inputs=[env, grpath], outputs=gr_dataframe, api_name="get_data")
|
393 |
-
"""
|
394 |
-
block.load(
|
395 |
-
download_leaderboard_dataset,
|
396 |
-
inputs=[],
|
397 |
-
outputs=[
|
398 |
-
grpath
|
399 |
-
],
|
400 |
-
)
|
401 |
-
"""
|
402 |
|
|
|
403 |
|
404 |
scheduler = BackgroundScheduler()
|
405 |
-
#
|
406 |
-
|
407 |
-
#scheduler.add_job(download_leaderboard_dataset, 'interval', seconds=3600)
|
408 |
-
#scheduler.add_job(run_update_dataset, 'interval', seconds=3600)
|
409 |
-
scheduler.add_job(restart, 'interval', seconds=10800)
|
410 |
scheduler.start()
|
411 |
|
412 |
-
block.launch()
|
|
|
1 |
import os
|
2 |
import json
|
3 |
import requests
|
|
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
7 |
from huggingface_hub.repocard import metadata_load
|
8 |
from apscheduler.schedulers.background import BackgroundScheduler
|
|
|
9 |
from tqdm.contrib.concurrent import thread_map
|
|
|
10 |
from utils import *
|
11 |
|
12 |
DATASET_REPO_URL = "https://huggingface.co/datasets/huggingface-projects/drlc-leaderboard-data"
|
|
|
16 |
block = gr.Blocks()
|
17 |
api = HfApi(token=HF_TOKEN)
|
18 |
|
19 |
+
# Define RL environments
|
20 |
rl_envs = [
|
21 |
+
{"rl_env_beautiful": "LunarLander-v2 π", "rl_env": "LunarLander-v2", "video_link": "", "global": None},
|
22 |
+
{"rl_env_beautiful": "CartPole-v1", "rl_env": "CartPole-v1", "video_link": "https://huggingface.co/sb3/ppo-CartPole-v1/resolve/main/replay.mp4", "global": None},
|
23 |
+
{"rl_env_beautiful": "FrozenLake-v1-4x4-no_slippery βοΈ", "rl_env": "FrozenLake-v1-4x4-no_slippery", "video_link": "", "global": None},
|
24 |
+
{"rl_env_beautiful": "FrozenLake-v1-8x8-no_slippery βοΈ", "rl_env": "FrozenLake-v1-8x8-no_slippery", "video_link": "", "global": None},
|
25 |
+
{"rl_env_beautiful": "FrozenLake-v1-4x4 βοΈ", "rl_env": "FrozenLake-v1-4x4", "video_link": "", "global": None},
|
26 |
+
{"rl_env_beautiful": "FrozenLake-v1-8x8 βοΈ", "rl_env": "FrozenLake-v1-8x8", "video_link": "", "global": None},
|
27 |
+
{"rl_env_beautiful": "Taxi-v3 π", "rl_env": "Taxi-v3", "video_link": "", "global": None},
|
28 |
+
{"rl_env_beautiful": "CarRacing-v0 ποΈ", "rl_env": "CarRacing-v0", "video_link": "", "global": None},
|
29 |
+
{"rl_env_beautiful": "CarRacing-v2 ποΈ", "rl_env": "CarRacing-v2", "video_link": "", "global": None},
|
30 |
+
{"rl_env_beautiful": "MountainCar-v0 β°οΈ", "rl_env": "MountainCar-v0", "video_link": "", "global": None},
|
31 |
+
{"rl_env_beautiful": "SpaceInvadersNoFrameskip-v4 πΎ", "rl_env": "SpaceInvadersNoFrameskip-v4", "video_link": "", "global": None},
|
32 |
+
{"rl_env_beautiful": "PongNoFrameskip-v4 πΎ", "rl_env": "PongNoFrameskip-v4", "video_link": "", "global": None},
|
33 |
+
{"rl_env_beautiful": "BreakoutNoFrameskip-v4 π§±", "rl_env": "BreakoutNoFrameskip-v4", "video_link": "", "global": None},
|
34 |
+
{"rl_env_beautiful": "QbertNoFrameskip-v4 π¦", "rl_env": "QbertNoFrameskip-v4", "video_link": "", "global": None},
|
35 |
+
{"rl_env_beautiful": "BipedalWalker-v3", "rl_env": "BipedalWalker-v3", "video_link": "", "global": None},
|
36 |
+
{"rl_env_beautiful": "Walker2DBulletEnv-v0", "rl_env": "Walker2DBulletEnv-v0", "video_link": "", "global": None},
|
37 |
+
{"rl_env_beautiful": "AntBulletEnv-v0", "rl_env": "AntBulletEnv-v0", "video_link": "", "global": None},
|
38 |
+
{"rl_env_beautiful": "HalfCheetahBulletEnv-v0", "rl_env": "HalfCheetahBulletEnv-v0", "video_link": "", "global": None},
|
39 |
+
{"rl_env_beautiful": "PandaReachDense-v2", "rl_env": "PandaReachDense-v2", "video_link": "", "global": None},
|
40 |
+
{"rl_env_beautiful": "PandaReachDense-v3", "rl_env": "PandaReachDense-v3", "video_link": "", "global": None},
|
41 |
+
{"rl_env_beautiful": "Pixelcopter-PLE-v0", "rl_env": "Pixelcopter-PLE-v0", "video_link": "", "global": None}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
]
|
43 |
|
44 |
+
# -------------------- Utility Functions --------------------
|
45 |
+
|
46 |
def restart():
|
47 |
+
"""Restart the Hugging Face Space."""
|
48 |
+
print("RESTARTING SPACE...")
|
49 |
api.restart_space(repo_id="huggingface-projects/Deep-Reinforcement-Learning-Leaderboard")
|
50 |
|
51 |
+
def download_leaderboard_dataset():
|
52 |
+
"""Download leaderboard dataset once at startup."""
|
53 |
+
print("Downloading leaderboard dataset...")
|
54 |
+
return snapshot_download(repo_id=DATASET_REPO_ID, repo_type="dataset")
|
55 |
+
|
56 |
def get_metadata(model_id):
|
57 |
+
"""Fetch metadata for a given model from Hugging Face."""
|
58 |
try:
|
59 |
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=180)
|
60 |
return metadata_load(readme_path)
|
61 |
except requests.exceptions.HTTPError:
|
62 |
+
return None # 404 README.md not found
|
63 |
+
|
|
|
64 |
def parse_metrics_accuracy(meta):
|
65 |
+
"""Extract accuracy metrics from metadata."""
|
66 |
if "model-index" not in meta:
|
67 |
return None
|
68 |
result = meta["model-index"][0]["results"]
|
69 |
metrics = result[0]["metrics"]
|
70 |
+
return metrics[0]["value"]
|
|
|
71 |
|
|
|
72 |
def parse_rewards(accuracy):
|
73 |
+
"""Extract mean and std rewards from accuracy metrics."""
|
74 |
default_std = -1000
|
75 |
+
default_reward = -1000
|
76 |
+
if accuracy is not None:
|
77 |
+
parsed = str(accuracy).split('+/-')
|
78 |
+
mean_reward = float(parsed[0].strip()) if parsed[0] else default_reward
|
79 |
+
std_reward = float(parsed[1].strip()) if len(parsed) > 1 else 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
else:
|
81 |
+
mean_reward, std_reward = default_reward, default_std
|
|
|
82 |
return mean_reward, std_reward
|
83 |
|
|
|
84 |
def get_model_ids(rl_env):
|
85 |
+
"""Retrieve models matching the given RL environment."""
|
86 |
+
return [x.modelId for x in api.list_models(filter=rl_env)]
|
|
|
|
|
87 |
|
|
|
88 |
def update_leaderboard_dataset_parallel(rl_env, path):
|
89 |
+
"""Parallelized update of leaderboard dataset for a given RL environment."""
|
90 |
model_ids = get_model_ids(rl_env)
|
91 |
|
92 |
def process_model(model_id):
|
93 |
meta = get_metadata(model_id)
|
94 |
+
if not meta:
|
|
|
95 |
return None
|
96 |
user_id = model_id.split('/')[0]
|
97 |
+
row = {
|
98 |
+
"User": user_id,
|
99 |
+
"Model": model_id,
|
100 |
+
"Results": None,
|
101 |
+
"Mean Reward": None,
|
102 |
+
"Std Reward": None
|
103 |
+
}
|
104 |
accuracy = parse_metrics_accuracy(meta)
|
105 |
mean_reward, std_reward = parse_rewards(accuracy)
|
|
|
|
|
106 |
row["Results"] = mean_reward - std_reward
|
107 |
row["Mean Reward"] = mean_reward
|
108 |
row["Std Reward"] = std_reward
|
109 |
return row
|
110 |
|
111 |
data = list(thread_map(process_model, model_ids, desc="Processing models"))
|
|
|
|
|
112 |
data = [row for row in data if row is not None]
|
113 |
|
114 |
ranked_dataframe = rank_dataframe(pd.DataFrame.from_records(data))
|
115 |
+
ranked_dataframe.to_csv(os.path.join(path, f"{rl_env}.csv"), index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
return ranked_dataframe
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def rank_dataframe(dataframe):
|
120 |
+
"""Sort models by results and assign ranking."""
|
121 |
dataframe = dataframe.sort_values(by=['Results', 'User', 'Model'], ascending=False)
|
122 |
+
dataframe.insert(0, 'Ranking', range(1, len(dataframe) + 1))
|
|
|
|
|
|
|
123 |
return dataframe
|
124 |
|
|
|
125 |
def run_update_dataset():
|
126 |
+
"""Update dataset periodically using the scheduler."""
|
127 |
path_ = download_leaderboard_dataset()
|
128 |
+
for env in rl_envs:
|
129 |
+
update_leaderboard_dataset_parallel(env["rl_env"], path_)
|
|
|
130 |
|
131 |
+
print("Uploading updated dataset...")
|
132 |
api.upload_folder(
|
133 |
+
folder_path=path_,
|
134 |
+
repo_id=DATASET_REPO_ID,
|
135 |
+
repo_type="dataset",
|
136 |
+
commit_message="Update dataset"
|
137 |
+
)
|
138 |
|
139 |
def filter_data(rl_env, path, user_id):
|
140 |
+
"""Filter dataset for a specific user ID."""
|
141 |
+
data_df = pd.read_csv(os.path.join(path, f"{rl_env}.csv"))
|
142 |
+
return data_df[data_df["User"] == user_id]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
# -------------------- Gradio UI --------------------
|
145 |
|
146 |
+
print("Initializing dataset...")
|
147 |
+
path_ = download_leaderboard_dataset()
|
148 |
|
149 |
with block:
|
150 |
+
gr.Markdown("""
|
151 |
+
# π Deep Reinforcement Learning Course Leaderboard π
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
This leaderboard displays trained agents from the [Deep Reinforcement Learning Course](https://huggingface.co/learn/deep-rl-course/unit0/introduction?fw=pt).
|
154 |
+
|
155 |
+
**Models are ranked using `mean_reward - std_reward`.**
|
156 |
|
157 |
+
If you can't find your model, please wait for the next update (every 2 hours).
|
|
|
|
|
|
|
158 |
""")
|
|
|
159 |
|
160 |
+
grpath = gr.State(path_) # Store dataset path as a state variable
|
161 |
+
|
162 |
+
for env in rl_envs:
|
163 |
+
with gr.TabItem(env["rl_env_beautiful"]):
|
164 |
+
gr.Markdown(f"## {env['rl_env_beautiful']}")
|
165 |
+
user_id = gr.Textbox(label="Your user ID")
|
166 |
+
search_btn = gr.Button("Search π")
|
167 |
+
reset_btn = gr.Button("Clear Search")
|
168 |
+
env_state = gr.State(env["rl_env"]) # Store environment name as a state variable
|
169 |
+
|
170 |
+
gr_dataframe = gr.Dataframe(
|
171 |
+
value=pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")),
|
172 |
+
headers=["Ranking π", "User π€", "Model π€", "Results", "Mean Reward", "Std Reward"],
|
173 |
+
datatype=["number", "markdown", "markdown", "number", "number", "number"],
|
174 |
+
row_count=(100, 'fixed')
|
175 |
+
)
|
176 |
+
|
177 |
+
# β
Corrected: Use `gr.State()` for env["rl_env"] and `grpath`
|
178 |
+
search_btn.click(fn=filter_data, inputs=[env_state, grpath, user_id], outputs=gr_dataframe)
|
179 |
+
reset_btn.click(fn=lambda: pd.read_csv(os.path.join(path_, f"{env['rl_env']}.csv")), inputs=[], outputs=gr_dataframe)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
+
# -------------------- Scheduler --------------------
|
183 |
|
184 |
scheduler = BackgroundScheduler()
|
185 |
+
scheduler.add_job(run_update_dataset, 'interval', hours=2) # Update dataset every 2 hours
|
186 |
+
scheduler.add_job(restart, 'interval', hours=3) # Restart space every 3 hours
|
|
|
|
|
|
|
187 |
scheduler.start()
|
188 |
|
189 |
+
block.launch()
|