import gradio as gr import torch import spaces from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline from diffusers.utils import export_to_video from PIL import Image, ImageOps from gtts import gTTS from pydub import AudioSegment import whisper import ffmpeg import requests from io import BytesIO import os import gc # Load LTX models ltx_model_id = "Lightricks/LTX-Video-0.9.7-distilled" upscaler_model_id = "Lightricks/ltxv-spatial-upscaler-0.9.7" pipe = LTXConditionPipeline.from_pretrained(ltx_model_id, torch_dtype=torch.float16) pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained( upscaler_model_id, vae=pipe.vae, torch_dtype=torch.float16 ) pipe.to("cuda") pipe_upsample.to("cuda") pipe.vae.enable_tiling() def prepare_image_condition(image, size=(480, 480), background=(0, 0, 0)): image = ImageOps.contain(image, size) canvas = Image.new("RGB", size, background) offset = ((size[0] - image.width) // 2, (size[1] - image.height) // 2) canvas.paste(image, offset) return canvas @spaces.GPU(duration=180) def generate_video(prompt, image_url): generator = torch.Generator("cuda").manual_seed(42) # Load & prepare image image = None if image_url: raw_image = Image.open(BytesIO(requests.get(image_url).content)).convert("RGB") image = prepare_image_condition(raw_image) # Set target resolutions base_width, base_height = 480, 480 # final size (must be divisible by 16) down_width, down_height = 320, 320 # for latent generation (must also be divisible by 16) # Step 1: Generate latents at lower resolution latents = pipe( prompt=prompt, image=image, width=down_width, height=down_height, num_frames=60, num_inference_steps=7, output_type="latent", guidance_scale=1.0, decode_timestep=0.05, decode_noise_scale=0.025, generator=generator ).frames torch.cuda.empty_cache() gc.collect() # Step 2: Upscale latents upscaled_latents = pipe_upsample(latents=latents, output_type="latent").frames torch.cuda.empty_cache() gc.collect() # Step 3: Decode upscaled latents to frames # Use the VAE decoder directly instead of the full pipeline frames = pipe.vae.decode(upscaled_latents).sample frames = (frames / 2 + 0.5).clamp(0, 1) # Normalize to [0, 1] frames = (frames * 255).to(torch.uint8) # Convert to uint8 # Convert tensor to PIL Images pil_frames = [] for i in range(frames.shape[2]): # num_frames dimension frame = frames[0, :, i, :, :].permute(1, 2, 0).cpu().numpy() pil_frames.append(Image.fromarray(frame)) torch.cuda.empty_cache() gc.collect() # Step 4: Export video video_path = "output.mp4" export_to_video(pil_frames, video_path, fps=24) # Step 5: TTS tts = gTTS(text=prompt, lang='en') tts.save("voice.mp3") AudioSegment.from_mp3("voice.mp3").export("voice.wav", format="wav") # Step 6: Subtitles model = whisper.load_model("base", device="cpu") result = model.transcribe("voice.wav", task="transcribe", language="en") # Generate SRT subtitles manually since result["srt"] might not be available srt_content = "" for i, segment in enumerate(result["segments"]): start_time = format_time(segment["start"]) end_time = format_time(segment["end"]) text = segment["text"].strip() srt_content += f"{i + 1}\n{start_time} --> {end_time}\n{text}\n\n" with open("subtitles.srt", "w", encoding="utf-8") as f: f.write(srt_content) # Step 7: Merge video + audio + subtitles final_output = "final_with_audio.mp4" try: ( ffmpeg .input(video_path) .output( final_output, vf="subtitles=subtitles.srt", **{"c:v": "libx264", "c:a": "aac"}, loglevel="error" ) .run(overwrite_output=True) ) # Add audio track ( ffmpeg .input(final_output) .input("voice.wav") .output( "final_complete.mp4", **{"c:v": "copy", "c:a": "aac"}, shortest=None, loglevel="error" ) .run(overwrite_output=True) ) return "final_complete.mp4" except Exception as e: print(f"FFmpeg error: {e}") # Fallback: return video without audio/subtitles return video_path def format_time(seconds): """Convert seconds to SRT time format""" hours = int(seconds // 3600) minutes = int((seconds % 3600) // 60) secs = int(seconds % 60) millisecs = int((seconds % 1) * 1000) return f"{hours:02d}:{minutes:02d}:{secs:02d},{millisecs:03d}" # Gradio UI demo = gr.Interface( fn=generate_video, inputs=[ gr.Textbox(label="Prompt", placeholder="Describe your scene..."), gr.Textbox(label="Optional Image URL (e.g. Pexels)", placeholder="https://...") ], outputs=gr.Video(label="Generated Video"), title="🎬 LTX AI Video Generator", description="AI-powered video with voiceover and subtitles. Now outputs at 480x480 resolution." ) demo.launch()