LTXpipeline / app.py
preSalesAIAutomation's picture
Update app.py
dce339d verified
raw
history blame
3.99 kB
import gradio as gr
import torch
import spaces
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
from gtts import gTTS
from pydub import AudioSegment
import whisper
import ffmpeg
import requests
from io import BytesIO
import os
import gc
# Load LTX models
ltx_model_id = "Lightricks/LTX-Video-0.9.7-distilled"
upscaler_model_id = "Lightricks/ltxv-spatial-upscaler-0.9.7"
pipe = LTXConditionPipeline.from_pretrained(ltx_model_id, torch_dtype=torch.float16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
upscaler_model_id, vae=pipe.vae, torch_dtype=torch.float16
)
pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()
def prepare_image_condition(image, size=(512, 512), background=(0, 0, 0)):
image = ImageOps.contain(image, size)
canvas = Image.new("RGB", size, background)
offset = ((size[0] - image.width) // 2, (size[1] - image.height) // 2)
canvas.paste(image, offset)
return canvas
def round_to_nearest_resolution(height, width, ratio):
return height - (height % ratio), width - (width % ratio)
@spaces.GPU(duration=180)
def generate_video(prompt, image_url):
generator = torch.Generator("cuda").manual_seed(42)
# Aspect-ratio preserving image prep
image = None
if image_url:
raw_image = Image.open(BytesIO(requests.get(image_url).content)).convert("RGB")
image = prepare_image_condition(raw_image)
# Dimensions
base_width, base_height = 512, 512
downscale = 2 / 3
w_d, h_d = round_to_nearest_resolution(int(base_width * downscale), int(base_height * downscale), pipe.vae_spatial_compression_ratio)
# Step 1: Generate latents
latents = pipe(
prompt=prompt,
image=image,
width=w_d,
height=h_d,
num_frames=60,
num_inference_steps=7,
output_type="latent",
guidance_scale=1.0,
decode_timestep=0.05,
decode_noise_scale=0.025,
generator=generator
).frames
torch.cuda.empty_cache()
gc.collect()
# Step 2: Upscale
upscaled = pipe_upsample(latents=latents, output_type="latent").frames
torch.cuda.empty_cache()
gc.collect()
# Step 3: Decode to frames
frames = pipe(
prompt=prompt,
image=image,
latents=upscaled,
width=base_width,
height=base_height,
num_frames=60,
num_inference_steps=10,
output_type="pil",
guidance_scale=1.0,
decode_timestep=0.05,
decode_noise_scale=0.025,
image_cond_noise_scale=0.025,
denoise_strength=0.3,
generator=generator
).frames[0]
# Step 4: Export video
video_path = "output.mp4"
export_to_video(frames, video_path, fps=24)
# Step 5: TTS
tts = gTTS(text=prompt, lang='en')
tts.save("voice.mp3")
AudioSegment.from_mp3("voice.mp3").export("voice.wav", format="wav")
# Step 6: Subtitles (CPU)
model = whisper.load_model("base", device="cpu")
result = model.transcribe("voice.wav", task="transcribe", language="en")
with open("subtitles.srt", "w", encoding="utf-8") as f:
f.write(result["srt"])
# Step 7: Merge video + audio + subtitles
final_output = "final_with_audio.mp4"
ffmpeg.input(video_path).output(
final_output,
vf="subtitles=subtitles.srt",
i="voice.mp3",
c="copy",
shortest=None,
loglevel="error"
).run()
return final_output
# Gradio UI
demo = gr.Interface(
fn=generate_video,
inputs=[
gr.Textbox(label="Prompt", placeholder="Describe your scene..."),
gr.Textbox(label="Optional Image URL (e.g. Pexels)", placeholder="https://...")
],
outputs=gr.Video(label="Generated Video"),
title="🎬 LTX AI Video Generator",
description="AI-powered video with voiceover and subtitles. Supports ZeroGPU (PyTorch) runtime."
)
demo.launch()