File size: 5,377 Bytes
3756d66
 
 
e082df4
3756d66
e082df4
3756d66
 
 
 
e082df4
 
3756d66
e082df4
3756d66
e082df4
 
 
 
 
 
 
3756d66
e082df4
3756d66
e082df4
 
 
d38c396
e082df4
 
 
 
 
3756d66
e082df4
 
3756d66
d38c396
 
e082df4
 
 
 
d38c396
 
 
 
 
 
3756d66
 
e082df4
d38c396
 
e082df4
 
3756d66
e082df4
 
 
 
3756d66
d38c396
e082df4
 
d38c396
 
 
 
e082df4
 
d38c396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e082df4
3756d66
d38c396
 
e082df4
3756d66
 
 
d38c396
 
e082df4
 
d38c396
 
 
 
 
 
 
 
 
e082df4
d38c396
 
e082df4
 
d38c396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756d66
 
e082df4
 
 
 
 
 
 
 
d38c396
e082df4
 
d38c396
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import gradio as gr
import torch
import spaces
from diffusers import LTXConditionPipeline, LTXLatentUpsamplePipeline
from diffusers.utils import export_to_video
from PIL import Image, ImageOps
from gtts import gTTS
from pydub import AudioSegment
import whisper
import ffmpeg
import requests
from io import BytesIO
import os
import gc

# Load LTX models
ltx_model_id = "Lightricks/LTX-Video-0.9.7-distilled"
upscaler_model_id = "Lightricks/ltxv-spatial-upscaler-0.9.7"

pipe = LTXConditionPipeline.from_pretrained(ltx_model_id, torch_dtype=torch.float16)
pipe_upsample = LTXLatentUpsamplePipeline.from_pretrained(
    upscaler_model_id, vae=pipe.vae, torch_dtype=torch.float16
)

pipe.to("cuda")
pipe_upsample.to("cuda")
pipe.vae.enable_tiling()

def prepare_image_condition(image, size=(480, 480), background=(0, 0, 0)):
    image = ImageOps.contain(image, size)
    canvas = Image.new("RGB", size, background)
    offset = ((size[0] - image.width) // 2, (size[1] - image.height) // 2)
    canvas.paste(image, offset)
    return canvas

@spaces.GPU(duration=180)
def generate_video(prompt, image_url):
    generator = torch.Generator("cuda").manual_seed(42)
    
    # Load & prepare image
    image = None
    if image_url:
        raw_image = Image.open(BytesIO(requests.get(image_url).content)).convert("RGB")
        image = prepare_image_condition(raw_image)
    
    # Set target resolutions
    base_width, base_height = 480, 480  # final size (must be divisible by 16)
    down_width, down_height = 320, 320  # for latent generation (must also be divisible by 16)
    
    # Step 1: Generate latents at lower resolution
    latents = pipe(
        prompt=prompt,
        image=image,
        width=down_width,
        height=down_height,
        num_frames=60,
        num_inference_steps=7,
        output_type="latent",
        guidance_scale=1.0,
        decode_timestep=0.05,
        decode_noise_scale=0.025,
        generator=generator
    ).frames
    
    torch.cuda.empty_cache()
    gc.collect()
    
    # Step 2: Upscale latents
    upscaled_latents = pipe_upsample(latents=latents, output_type="latent").frames
    
    torch.cuda.empty_cache()
    gc.collect()
    
    # Step 3: Decode upscaled latents to frames
    # Use the VAE decoder directly instead of the full pipeline
    frames = pipe.vae.decode(upscaled_latents).sample
    frames = (frames / 2 + 0.5).clamp(0, 1)  # Normalize to [0, 1]
    frames = (frames * 255).to(torch.uint8)  # Convert to uint8
    
    # Convert tensor to PIL Images
    pil_frames = []
    for i in range(frames.shape[2]):  # num_frames dimension
        frame = frames[0, :, i, :, :].permute(1, 2, 0).cpu().numpy()
        pil_frames.append(Image.fromarray(frame))
    
    torch.cuda.empty_cache()
    gc.collect()
    
    # Step 4: Export video
    video_path = "output.mp4"
    export_to_video(pil_frames, video_path, fps=24)
    
    # Step 5: TTS
    tts = gTTS(text=prompt, lang='en')
    tts.save("voice.mp3")
    AudioSegment.from_mp3("voice.mp3").export("voice.wav", format="wav")
    
    # Step 6: Subtitles
    model = whisper.load_model("base", device="cpu")
    result = model.transcribe("voice.wav", task="transcribe", language="en")
    
    # Generate SRT subtitles manually since result["srt"] might not be available
    srt_content = ""
    for i, segment in enumerate(result["segments"]):
        start_time = format_time(segment["start"])
        end_time = format_time(segment["end"])
        text = segment["text"].strip()
        srt_content += f"{i + 1}\n{start_time} --> {end_time}\n{text}\n\n"
    
    with open("subtitles.srt", "w", encoding="utf-8") as f:
        f.write(srt_content)
    
    # Step 7: Merge video + audio + subtitles
    final_output = "final_with_audio.mp4"
    try:
        (
            ffmpeg
            .input(video_path)
            .output(
                final_output,
                vf="subtitles=subtitles.srt",
                **{"c:v": "libx264", "c:a": "aac"},
                loglevel="error"
            )
            .run(overwrite_output=True)
        )
        
        # Add audio track
        (
            ffmpeg
            .input(final_output)
            .input("voice.wav")
            .output(
                "final_complete.mp4",
                **{"c:v": "copy", "c:a": "aac"},
                shortest=None,
                loglevel="error"
            )
            .run(overwrite_output=True)
        )
        
        return "final_complete.mp4"
        
    except Exception as e:
        print(f"FFmpeg error: {e}")
        # Fallback: return video without audio/subtitles
        return video_path

def format_time(seconds):
    """Convert seconds to SRT time format"""
    hours = int(seconds // 3600)
    minutes = int((seconds % 3600) // 60)
    secs = int(seconds % 60)
    millisecs = int((seconds % 1) * 1000)
    return f"{hours:02d}:{minutes:02d}:{secs:02d},{millisecs:03d}"

# Gradio UI
demo = gr.Interface(
    fn=generate_video,
    inputs=[
        gr.Textbox(label="Prompt", placeholder="Describe your scene..."),
        gr.Textbox(label="Optional Image URL (e.g. Pexels)", placeholder="https://...")
    ],
    outputs=gr.Video(label="Generated Video"),
    title="🎬 LTX AI Video Generator",
    description="AI-powered video with voiceover and subtitles. Now outputs at 480x480 resolution."
)

demo.launch()