import os import concurrent.futures from huggingface_hub import login from transformers import MarianMTModel, MarianTokenizer, pipeline import requests import io from PIL import Image import gradio as gr # Login with Hugging Face token hf_token = os.getenv("HUGGINGFACE_API_KEY") # Updated variable name if hf_token: login(token=hf_token, add_to_git_credential=True) else: raise ValueError("Hugging Face token not found in environment variables.") # Dynamic translation model loading def load_translation_model(src_lang, tgt_lang): model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translator = pipeline("translation", model=model, tokenizer=tokenizer) return translator # Translation function with reduced max_length def translate_text(text, src_lang, tgt_lang): try: translator = load_translation_model(src_lang, tgt_lang) translation = translator(text, max_length=20) # Reduced max length for speed return translation[0]['translation_text'] except Exception as e: return f"An error occurred: {str(e)}" # Image generation with reduced resolution flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" flux_headers = {"Authorization": f"Bearer {hf_token}"} def generate_image(prompt): try: response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": prompt}) if response.status_code == 200: image = Image.open(io.BytesIO(response.content)) image = image.resize((256, 256)) # Reduce resolution for faster processing return image else: return None except Exception as e: print(f"Error in image generation: {e}") return None # Creative text generation with reduced length mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" mistral_headers = {"Authorization": f"Bearer {hf_token}"} def generate_creative_text(translated_text): try: response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text, "max_length": 30}) if response.status_code == 200: return response.json()[0]['generated_text'] else: return "Error generating creative text" except Exception as e: print(f"Error in creative text generation: {e}") return None # Full workflow function with parallel processing def translate_generate_image_and_text(text, src_lang, tgt_lang): translated_text = translate_text(text, src_lang, tgt_lang) with concurrent.futures.ThreadPoolExecutor() as executor: image_future = executor.submit(generate_image, translated_text) creative_text_future = executor.submit(generate_creative_text, translated_text) image = image_future.result() creative_text = creative_text_future.result() return translated_text, creative_text, image # Language options for Gradio dropdown language_codes = { "Tamil": "ta", "English": "en", "French": "fr", "Spanish": "es", "German": "de" } # Gradio Interface interface = gr.Interface( fn=translate_generate_image_and_text, inputs=[ gr.Textbox(label="Enter text"), gr.Dropdown(choices=list(language_codes.keys()), label="Source Language", default="Tamil"), gr.Dropdown(choices=list(language_codes.keys()), label="Target Language", default="English"), ], outputs=["text", "text", "image"], title="Multilingual Translation, Image Generation & Creative Text", description="Translate text between languages, generate images based on translation, and create creative text.", ) # Launch Gradio app interface.launch()