import os from huggingface_hub import login from transformers import MarianMTModel, MarianTokenizer, pipeline import requests import io from PIL import Image import gradio as gr # Set Hugging Face API key hf_token = os.getenv("HUGGINGFACE_API_KEY") if hf_token is None: raise ValueError("Hugging Face API key not found in environment variables.") # Login to Hugging Face login(token=hf_token) # Define models for specific languages language_models = { "fra": "Helsinki-NLP/opus-mt-fr-en", "spa": "Helsinki-NLP/opus-mt-es-en", "tam": "Helsinki-NLP/opus-mt-tam-en", "deu": "Helsinki-NLP/opus-mt-de-en", "jpn": "Helsinki-NLP/opus-mt-ja-en", "rus": "Helsinki-NLP/opus-mt-ru-en", "kor": "Helsinki-NLP/opus-mt-ko-en", "hin": "Helsinki-NLP/opus-mt-hi-en", "ita": "Helsinki-NLP/opus-mt-it-en", "por": "Helsinki-NLP/opus-mt-pt-en" # Add more language models as needed } # Function to get translator pipeline for specific language def get_translator(language_code): model_name = language_models.get(language_code) if model_name: tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) return pipeline("translation", model=model, tokenizer=tokenizer) else: raise ValueError(f"No translation model found for language code '{language_code}'.") # FLUX model API settings flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" flux_headers = {"Authorization": f"Bearer {hf_token}"} # Function for translation, creative text generation, and image creation def translate_generate_image_and_text(input_text, src_lang_code): try: # Step 1: Get translator and translate text translator = get_translator(src_lang_code) translation = translator(input_text, max_length=40) translated_text = translation[0]['translation_text'] # Step 2: Generate creative text with Mistral model mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" mistral_headers = {"Authorization": f"Bearer {hf_token}"} mistral_response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text}) if mistral_response.status_code == 200: creative_text = mistral_response.json()[0]['generated_text'] else: creative_text = "Error generating creative text" # Step 3: Generate an image with FLUX model flux_response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": creative_text}) if flux_response.status_code == 200: image_bytes = flux_response.content image = Image.open(io.BytesIO(image_bytes)) else: image = None return translated_text, creative_text, image except Exception as e: return f"An error occurred: {str(e)}", None, None # Gradio interface setup interface = gr.Interface( fn=translate_generate_image_and_text, inputs=[ gr.Textbox(label="Enter text for translation"), gr.Textbox(label="Source Language Code", placeholder="e.g., 'fra' for French, 'spa' for Spanish") ], outputs=[ gr.Textbox(label="Translated Text"), gr.Textbox(label="Creative Text"), gr.Image(label="Generated Image") ], title="Multilingual Translation, Creative Content, and Image Generator", description="Select a language and translate text to English, generate creative content, and produce an image." ) # Launch the Gradio app interface.launch()