Spaces:
Sleeping
Sleeping
import os | |
import concurrent.futures | |
from huggingface_hub import login | |
from transformers import MarianMTModel, MarianTokenizer, pipeline | |
import requests | |
import io | |
from PIL import Image | |
import gradio as gr | |
# Login with Hugging Face token | |
hf_token = os.getenv("HUGGINGFACE_API_KEY") # Updated variable name | |
if hf_token: | |
login(token=hf_token, add_to_git_credential=True) | |
else: | |
raise ValueError("Hugging Face token not found in environment variables.") | |
# Dynamic translation model loading | |
def load_translation_model(src_lang, tgt_lang): | |
model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}" | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
translator = pipeline("translation", model=model, tokenizer=tokenizer) | |
return translator | |
# Translation function with reduced max_length | |
def translate_text(text, src_lang, tgt_lang): | |
try: | |
translator = load_translation_model(src_lang, tgt_lang) | |
translation = translator(text, max_length=20) # Reduced max length for speed | |
return translation[0]['translation_text'] | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Image generation with reduced resolution | |
flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
flux_headers = {"Authorization": f"Bearer {hf_token}"} | |
def generate_image(prompt): | |
try: | |
response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": prompt}) | |
if response.status_code == 200: | |
image = Image.open(io.BytesIO(response.content)) | |
image = image.resize((256, 256)) # Reduce resolution for faster processing | |
return image | |
else: | |
return None | |
except Exception as e: | |
print(f"Error in image generation: {e}") | |
return None | |
# Creative text generation with reduced length | |
mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" | |
mistral_headers = {"Authorization": f"Bearer {hf_token}"} | |
def generate_creative_text(translated_text): | |
try: | |
response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text, "max_length": 30}) | |
if response.status_code == 200: | |
return response.json()[0]['generated_text'] | |
else: | |
return "Error generating creative text" | |
except Exception as e: | |
print(f"Error in creative text generation: {e}") | |
return None | |
# Full workflow function with parallel processing | |
def translate_generate_image_and_text(text, src_lang, tgt_lang): | |
translated_text = translate_text(text, src_lang, tgt_lang) | |
with concurrent.futures.ThreadPoolExecutor() as executor: | |
image_future = executor.submit(generate_image, translated_text) | |
creative_text_future = executor.submit(generate_creative_text, translated_text) | |
image = image_future.result() | |
creative_text = creative_text_future.result() | |
return translated_text, creative_text, image | |
# Language options for Gradio dropdown | |
language_codes = { | |
"Tamil": "ta", "English": "en", "French": "fr", "Spanish": "es", "German": "de" | |
} | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=translate_generate_image_and_text, | |
inputs=[ | |
gr.Textbox(label="Enter text"), | |
gr.Dropdown(choices=list(language_codes.keys()), label="Source Language", value="Tamil"), | |
gr.Dropdown(choices=list(language_codes.keys()), label="Target Language", value="English"), | |
], | |
outputs=["text", "text", "image"], | |
title="Multilingual Translation, Image Generation & Creative Text", | |
description="Translate text between languages, generate images based on translation, and create creative text.", | |
) | |
# Launch Gradio app | |
interface.launch() | |