Spaces:
Sleeping
Sleeping
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer | |
import requests | |
from PIL import Image | |
import io | |
import gradio as gr | |
# Load the MarianMT model and tokenizer for translation (Tamil to English) | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
translation_model = MarianMTModel.from_pretrained(model_name) | |
translation_tokenizer = MarianTokenizer.from_pretrained(model_name) | |
# Load GPT-Neo for creative text generation | |
text_generation_model_name = "EleutherAI/gpt-neo-1.3B" | |
text_generation_model = AutoModelForCausalLM.from_pretrained(text_generation_model_name) | |
text_generation_tokenizer = AutoTokenizer.from_pretrained(text_generation_model_name) | |
# Add padding token to GPT-Neo tokenizer if not present | |
if text_generation_tokenizer.pad_token is None: | |
text_generation_tokenizer.add_special_tokens({'pad_token': '[PAD]'}) | |
# Hugging Face API for FLUX.1 image generation | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
headers = {"Authorization": "HUGGINGFACE_API_KEY"} # Replace with your API key | |
# Query Hugging Face API to generate image | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.content | |
# Translate Tamil text to English | |
def translate_text(tamil_text): | |
inputs = translation_tokenizer(tamil_text, return_tensors="pt", padding=True, truncation=True) | |
translated_tokens = translation_model.generate(**inputs) | |
translation = translation_tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translation | |
# Generate an image based on the translated text | |
def generate_image(prompt): | |
image_bytes = query({"inputs": prompt}) | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
# Generate creative text based on the translated English text | |
def generate_creative_text(translated_text): | |
inputs = text_generation_tokenizer(translated_text, return_tensors="pt", padding=True, truncation=True) | |
generated_tokens = text_generation_model.generate(**inputs, max_length=100) | |
creative_text = text_generation_tokenizer.decode(generated_tokens[0], skip_special_tokens=True) | |
return creative_text | |
# Function to handle the full workflow | |
def translate_generate_image_and_text(tamil_text): | |
# Step 1: Translate Tamil to English | |
translated_text = translate_text(tamil_text) | |
# Step 2: Generate an image from the translated text | |
image = generate_image(translated_text) | |
# Step 3: Generate creative text from the translated text | |
creative_text = generate_creative_text(translated_text) | |
return translated_text, creative_text, image | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=translate_generate_image_and_text, | |
inputs=gr.Textbox(label="Enter Tamil Text"), # Input for Tamil text | |
outputs=[ | |
gr.Textbox(label="Translated Text"), # Output for translated text | |
gr.Textbox(label="Creative Generated Text"),# Output for creative text | |
gr.Image(label="Generated Image") # Output for generated image | |
], | |
title="Tamil to English Translation, Image Generation & Creative Text", | |
description="Enter Tamil text to translate to English, generate an image, and create creative text based on the translation." | |
) | |
# Launch Gradio app | |
interface.launch() |