Spaces:
Sleeping
Sleeping
import os | |
from huggingface_hub import login | |
from transformers import MarianMTModel, MarianTokenizer, pipeline | |
import requests | |
import io | |
from PIL import Image | |
import gradio as gr | |
# Retrieve the token from the environment variable | |
hf_token = os.getenv("HUGGINGFACE_API_KEY") | |
if not hf_token: | |
raise ValueError("Hugging Face token not found in environment variables.") | |
login(token=hf_token, add_to_git_credential=True) | |
# Define available languages with their respective Helsinki model names | |
language_models = { | |
"Arabic": "Helsinki-NLP/opus-mt-ar-en", | |
"Bengali": "Helsinki-NLP/opus-mt-bn-en", | |
"French": "Helsinki-NLP/opus-mt-fr-en", | |
"Hindi": "Helsinki-NLP/opus-mt-hi-en", | |
"Russian": "Helsinki-NLP/opus-mt-ru-en", | |
"German": "Helsinki-NLP/opus-mt-de-en", | |
"Spanish": "Helsinki-NLP/opus-mt-es-en", | |
"Tamil": "Helsinki-NLP/opus-mt-mul-en" # Using multilingual model for Tamil | |
} | |
# Function to load a translation model dynamically | |
def load_translation_pipeline(language): | |
model_name = language_models[language] | |
tokenizer = MarianTokenizer.from_pretrained(model_name) | |
model = MarianMTModel.from_pretrained(model_name) | |
return pipeline("translation", model=model, tokenizer=tokenizer) | |
# API credentials and endpoint for FLUX (Image generation) | |
flux_API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
flux_headers = {"Authorization": f"Bearer {hf_token}"} | |
# Function for translation | |
def translate_text(text, language): | |
translator = load_translation_pipeline(language) | |
try: | |
translation = translator(text, max_length=40) | |
translated_text = translation[0]['translation_text'] | |
return translated_text | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
# Function to send payload and generate an image | |
def generate_image(prompt): | |
try: | |
response = requests.post(flux_API_URL, headers=flux_headers, json={"inputs": prompt}) | |
if response.status_code == 200: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
else: | |
return None | |
except Exception as e: | |
print(f"An error occurred: {e}") | |
return None | |
# Function for Mistral API call to generate creative text | |
mistral_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" | |
mistral_headers = {"Authorization": f"Bearer {hf_token}"} | |
def generate_creative_text(translated_text): | |
try: | |
response = requests.post(mistral_API_URL, headers=mistral_headers, json={"inputs": translated_text}) | |
if response.status_code == 200: | |
creative_text = response.json()[0]['generated_text'] | |
return creative_text | |
else: | |
return "Error generating creative text" | |
except Exception as e: | |
return None | |
# Function to handle the full workflow | |
def translate_generate_image_and_text(input_text, language): | |
translated_text = translate_text(input_text, language) | |
image = generate_image(translated_text) | |
creative_text = generate_creative_text(translated_text) | |
return translated_text, creative_text, image | |
# Create Gradio interface with language selection | |
interface = gr.Interface( | |
fn=translate_generate_image_and_text, | |
inputs=[ | |
gr.Textbox(label="Input Text in Source Language"), | |
gr.Dropdown(choices=list(language_models.keys()), label="Source Language") | |
], | |
outputs=["text", "text", "image"], | |
title="Multilingual Translation, Image Generation & Creative Text", | |
description="Enter text to translate to English, generate an image, and create creative content based on the translation." | |
) | |
# Launch Gradio app | |
interface.launch() | |