Spaces:
Sleeping
Sleeping
File size: 981 Bytes
9b3e60b 7b7b977 9e5c989 f209d99 9b3e60b f209d99 7b7b977 9b3e60b c0de39e 9b3e60b c0de39e 9b3e60b c0de39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
#import librosa
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import streamlit as st
from audio_recorder_streamlit import audio_recorder
audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000)
if audio_bytes:
st.audio(audio_bytes, format="audio/wav")
#load pre-trained model and tokenizer
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
#load audio file
#speech, rate = librosa.load("/hip-voice.m4a",sr=16000)
#import IPython.display as display
#display.Audio("batman1.wav", autoplay=True)
input_values = tokenizer(audio_bytes, return_tensors = 'pt').input_values
#input_values = tokenizer(speech, return_tensors = 'pt').input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim =-1)
#decode the audio to generate text
transcriptions = tokenizer.decode(predicted_ids[0])
print(transcriptions)
|