pratikshahp commited on
Commit
ad50413
·
verified ·
1 Parent(s): 8745d6b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -12
app.py CHANGED
@@ -6,13 +6,19 @@ import streamlit as st
6
  import torch
7
  import requests
8
 
9
- def prettier(results):
10
- for item in results:
11
- score = round(item['score'], 3)
12
- label = item['label'] # Use square brackets to access the 'label' key
13
- location = [round(value, 2) for value in item['box'].values()]
14
- print(f'Detected {label} with confidence {score} at location {location}')
15
 
 
 
 
 
 
 
16
  # Function to process uploaded image and prepare input for model
17
 
18
  def input_image_setup(uploaded_file):
@@ -52,9 +58,10 @@ if submit:
52
  # print results
53
  target_sizes = torch.tensor([image.size[::-1]])
54
  results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
55
- for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
56
- box = [round(i, 2) for i in box.tolist()]
57
- print(
58
- f"Detected {model.config.id2label[label.item()]} with confidence "
59
- f"{round(score.item(), 3)} at location {box}"
60
- )
 
 
6
  import torch
7
  import requests
8
 
9
+ #def prettier(results):
10
+ # for item in results:
11
+ # score = round(item['score'], 3)
12
+ # label = item['label'] # Use square brackets to access the 'label' key
13
+ # location = [round(value, 2) for value in item['box'].values()]
14
+ # print(f'Detected {label} with confidence {score} at location {location}')
15
 
16
+ def prettify_results(results):
17
+ for item in results:
18
+ score = round(item['score'].item(), 3)
19
+ label = model.config.id2label[item['label']] # Get label from id2label mapping in model config
20
+ box = [round(coord, 2) for coord in item['box']]
21
+ st.write(f'Detected {label} with confidence {score} at location {box}')
22
  # Function to process uploaded image and prepare input for model
23
 
24
  def input_image_setup(uploaded_file):
 
58
  # print results
59
  target_sizes = torch.tensor([image.size[::-1]])
60
  results = processor.post_process_object_detection(outputs, threshold=0.9, target_sizes=target_sizes)[0]
61
+ prettify_results(results)
62
+ #for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
63
+ # box = [round(i, 2) for i in box.tolist()]
64
+ # print(
65
+ # f"Detected {model.config.id2label[label.item()]} with confidence "
66
+ # f"{round(score.item(), 3)} at location {box}"
67
+ # )