Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,21 +12,17 @@ def prettier(results):
|
|
| 12 |
location = [round(value, 2) for value in item['box'].values()]
|
| 13 |
print(f'Detected {label} with confidence {score} at location {location}')
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
def input_image_setup(uploaded_file):
|
| 17 |
if uploaded_file is not None:
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
{
|
| 22 |
-
"mime_type": uploaded_file.type,
|
| 23 |
-
"data": bytes_data
|
| 24 |
-
}
|
| 25 |
-
]
|
| 26 |
-
return image_parts
|
| 27 |
else:
|
| 28 |
raise FileNotFoundError("No file uploaded")
|
| 29 |
|
|
|
|
| 30 |
#Streamlit App
|
| 31 |
st.set_page_config(page_title="Image Detection")
|
| 32 |
st.header("Object Detection Application")
|
|
@@ -46,7 +42,7 @@ if submit:
|
|
| 46 |
image_data=input_image_setup(uploaded_file)
|
| 47 |
st.subheader("The response is..")
|
| 48 |
#process with model
|
| 49 |
-
inputs = processor(images=
|
| 50 |
outputs = model(**inputs)
|
| 51 |
|
| 52 |
# model predicts bounding boxes and corresponding COCO classes
|
|
|
|
| 12 |
location = [round(value, 2) for value in item['box'].values()]
|
| 13 |
print(f'Detected {label} with confidence {score} at location {location}')
|
| 14 |
|
| 15 |
+
# Function to process uploaded image and prepare input for model
|
| 16 |
|
| 17 |
def input_image_setup(uploaded_file):
|
| 18 |
if uploaded_file is not None:
|
| 19 |
+
bytes_data = uploaded_file.getvalue()
|
| 20 |
+
image = Image.open(io.BytesIO(bytes_data)) # Convert bytes data to PIL image
|
| 21 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
else:
|
| 23 |
raise FileNotFoundError("No file uploaded")
|
| 24 |
|
| 25 |
+
|
| 26 |
#Streamlit App
|
| 27 |
st.set_page_config(page_title="Image Detection")
|
| 28 |
st.header("Object Detection Application")
|
|
|
|
| 42 |
image_data=input_image_setup(uploaded_file)
|
| 43 |
st.subheader("The response is..")
|
| 44 |
#process with model
|
| 45 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 46 |
outputs = model(**inputs)
|
| 47 |
|
| 48 |
# model predicts bounding boxes and corresponding COCO classes
|