import torch from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration from audio_recorder_streamlit import audio_recorder import numpy as np def transcribe_audio(audio_bytes): model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-mustc-en-fr-st") processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-mustc-en-fr-st") generated_ids = model.generate(input_ids=audio_bytes["input_features"], attention_mask=audio_bytes["attention_mask"]) translation = processor.batch_decode(generated_ids, skip_special_tokens=True) return translation st.title("Audio to Text Transcription..") audio_bytes = audio_recorder(pause_threshold=3.0, sample_rate=16_000) if audio_bytes: st.audio(audio_bytes, format="audio/wav") transcription = transcribe_audio(audio_bytes) if transcription: st.write("Transcription:") st.write(transcription) else: st.write("Error: Failed to transcribe audio.") else: st.write("No audio recorded.")