Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,12 +12,23 @@ from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
|
|
| 12 |
def transcribe_audio(audio_bytes):
|
| 13 |
processor = AutoProcessor.from_pretrained("openai/whisper-large")
|
| 14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
|
|
|
|
|
|
|
| 15 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
|
|
|
|
|
|
| 16 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
logits = model(**inputs).logits
|
|
|
|
|
|
|
| 19 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 20 |
transcription = processor.decode(predicted_ids[0])
|
|
|
|
| 21 |
return transcription
|
| 22 |
|
| 23 |
|
|
|
|
| 12 |
def transcribe_audio(audio_bytes):
|
| 13 |
processor = AutoProcessor.from_pretrained("openai/whisper-large")
|
| 14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-large")
|
| 15 |
+
|
| 16 |
+
# Convert audio bytes to numpy array
|
| 17 |
audio_array = np.frombuffer(audio_bytes, dtype=np.int16)
|
| 18 |
+
|
| 19 |
+
# Normalize audio array
|
| 20 |
audio_tensor = torch.tensor(audio_array, dtype=torch.float64) / 32768.0
|
| 21 |
+
|
| 22 |
+
# Provide inputs to the processor
|
| 23 |
+
inputs = processor(audio=audio_tensor, sampling_rate=16000, return_tensors="pt")
|
| 24 |
+
|
| 25 |
+
# Generate logits from the model
|
| 26 |
logits = model(**inputs).logits
|
| 27 |
+
|
| 28 |
+
# Decode the predicted IDs to get the transcription
|
| 29 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 30 |
transcription = processor.decode(predicted_ids[0])
|
| 31 |
+
|
| 32 |
return transcription
|
| 33 |
|
| 34 |
|