|
import argparse |
|
import torch |
|
import os |
|
import json |
|
from tqdm import tqdm |
|
import shortuuid |
|
|
|
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN |
|
from llava.conversation import conv_templates, SeparatorStyle |
|
from llava.model.builder import load_pretrained_model |
|
from llava.utils import disable_torch_init |
|
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria |
|
|
|
from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_TOKEN_INDEX |
|
from typing import Dict, Optional, Sequence, List |
|
import transformers |
|
import re |
|
|
|
from PIL import Image |
|
import math |
|
|
|
|
|
def split_list(lst, n): |
|
"""Split a list into n (roughly) equal-sized chunks""" |
|
chunk_size = math.ceil(len(lst) / n) |
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] |
|
|
|
|
|
def get_chunk(lst, n, k): |
|
chunks = split_list(lst, n) |
|
return chunks[k] |
|
|
|
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict: |
|
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} |
|
|
|
im_start, im_end = tokenizer.additional_special_tokens_ids |
|
nl_tokens = tokenizer("\n").input_ids |
|
_system = tokenizer("system").input_ids + nl_tokens |
|
_user = tokenizer("user").input_ids + nl_tokens |
|
_assistant = tokenizer("assistant").input_ids + nl_tokens |
|
|
|
|
|
input_ids, targets = [], [] |
|
|
|
source = sources |
|
if roles[source[0]["from"]] != roles["human"]: |
|
source = source[1:] |
|
|
|
input_id, target = [], [] |
|
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens |
|
input_id += system |
|
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens |
|
assert len(input_id) == len(target) |
|
for j, sentence in enumerate(source): |
|
role = roles[sentence["from"]] |
|
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]: |
|
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"])) |
|
texts = sentence["value"].split('<image>') |
|
_input_id = tokenizer(role).input_ids + nl_tokens |
|
for i,text in enumerate(texts): |
|
_input_id += tokenizer(text).input_ids |
|
if i<len(texts)-1: |
|
_input_id += [IMAGE_TOKEN_INDEX] + nl_tokens |
|
_input_id += [im_end] + nl_tokens |
|
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image |
|
else: |
|
if sentence["value"] is None: |
|
_input_id = tokenizer(role).input_ids + nl_tokens |
|
else: |
|
_input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens |
|
input_id += _input_id |
|
if role == "<|im_start|>user": |
|
_target = [im_start] + [IGNORE_INDEX] * (len(_input_id) - 3) + [im_end] + nl_tokens |
|
elif role == "<|im_start|>assistant": |
|
_target = [im_start] + [IGNORE_INDEX] * len(tokenizer(role).input_ids) + _input_id[len(tokenizer(role).input_ids) + 1 : -2] + [im_end] + nl_tokens |
|
else: |
|
raise NotImplementedError |
|
target += _target |
|
|
|
input_ids.append(input_id) |
|
targets.append(target) |
|
input_ids = torch.tensor(input_ids, dtype=torch.long) |
|
targets = torch.tensor(targets, dtype=torch.long) |
|
return input_ids |
|
|
|
def eval_model(args): |
|
|
|
|
|
disable_torch_init() |
|
model_path = os.path.expanduser(args.model_path) |
|
model_name = get_model_name_from_path(model_path) |
|
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, args.model_base, model_name) |
|
|
|
|
|
with open(os.path.expanduser(args.question_file)) as f: |
|
questions = json.load(f) |
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) |
|
answers_file = os.path.expanduser(args.answers_file) |
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True) |
|
ans_file = open(answers_file, "w") |
|
|
|
for line in tqdm(questions): |
|
idx = line["sample_id"] |
|
question_type = line["metadata"]["question_type"] |
|
dataset_name = line["metadata"]["dataset"] |
|
gt = line["conversations"][1]["value"] |
|
|
|
image_files = line["image"] |
|
qs = line["conversations"][0]["value"] |
|
cur_prompt = args.extra_prompt + qs |
|
|
|
args.conv_mode = "qwen_1_5" |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids = preprocess_qwen([line["conversations"][0],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda() |
|
img_num = list(input_ids.squeeze()).count(IMAGE_TOKEN_INDEX) |
|
|
|
image_tensors = [] |
|
for image_file in image_files: |
|
image = Image.open(os.path.join(args.image_folder, image_file)) |
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'] |
|
image_tensors.append(image_tensor.half().cuda()) |
|
|
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensors, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
|
|
max_new_tokens=1024, |
|
use_cache=True) |
|
|
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({ |
|
"dataset": dataset_name, |
|
"sample_id": idx, |
|
"prompt": cur_prompt, |
|
"pred_response": outputs, |
|
"gt_response": gt, |
|
"shortuuid": ans_id, |
|
"model_id": model_name, |
|
"question_type": question_type, |
|
}) + "\n") |
|
ans_file.flush() |
|
|
|
if len(line["conversations"]) > 2: |
|
|
|
for i in range(2, len(line["conversations"]), 2): |
|
input_ids = torch.cat((input_ids, output_ids), dim=1) |
|
|
|
gt = line["conversations"][i + 1]["value"] |
|
qs = line["conversations"][i]["value"] |
|
cur_prompt = args.extra_prompt + qs |
|
|
|
args.conv_mode = "qwen_1_5" |
|
|
|
conv = conv_templates[args.conv_mode].copy() |
|
conv.append_message(conv.roles[0], qs) |
|
conv.append_message(conv.roles[1], None) |
|
prompt = conv.get_prompt() |
|
|
|
input_ids_new = preprocess_qwen([line["conversations"][i],{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda() |
|
input_ids = torch.cat((input_ids, input_ids_new), dim=1) |
|
img_num = list(input_ids_new.squeeze()).count(IMAGE_TOKEN_INDEX) |
|
|
|
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=image_tensors, |
|
do_sample=True if args.temperature > 0 else False, |
|
temperature=args.temperature, |
|
top_p=args.top_p, |
|
num_beams=args.num_beams, |
|
|
|
max_new_tokens=1024, |
|
use_cache=True) |
|
|
|
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
ans_id = shortuuid.uuid() |
|
ans_file.write(json.dumps({ |
|
"dataset": dataset_name, |
|
"sample_id": idx, |
|
"prompt": cur_prompt, |
|
"pred_response": outputs, |
|
"gt_response": gt, |
|
"shortuuid": ans_id, |
|
"model_id": model_name, |
|
"question_type": question_type, |
|
}) + "\n") |
|
ans_file.flush() |
|
|
|
|
|
ans_file.close() |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--model-path", type=str, default="facebook/opt-350m") |
|
parser.add_argument("--model-base", type=str, default=None) |
|
parser.add_argument("--image-folder", type=str, default="") |
|
parser.add_argument("--extra-prompt", type=str, default="") |
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl") |
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl") |
|
parser.add_argument("--conv-mode", type=str, default="llava_v1") |
|
parser.add_argument("--num-chunks", type=int, default=1) |
|
parser.add_argument("--chunk-idx", type=int, default=0) |
|
parser.add_argument("--temperature", type=float, default=0.2) |
|
parser.add_argument("--top_p", type=float, default=None) |
|
parser.add_argument("--num_beams", type=int, default=1) |
|
parser.add_argument("--test_size", type=int, default=10000000) |
|
args = parser.parse_args() |
|
|
|
eval_model(args) |