prateekbh commited on
Commit
417bd31
·
verified ·
1 Parent(s): 0f4c15d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -24
app.py CHANGED
@@ -106,30 +106,31 @@ def process(image):
106
  orig_image = Image.fromarray(image)
107
  w,h = orig_im_size = orig_image.size
108
  image = resize_image(orig_image)
109
- im_np = np.array(image)
110
- im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
111
- im_tensor = torch.unsqueeze(im_tensor,0)
112
- im_tensor = torch.divide(im_tensor,255.0)
113
- im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
114
- if torch.cuda.is_available():
115
- im_tensor=im_tensor.cuda()
116
-
117
- #inference
118
- result=net(im_tensor)
119
- # post process
120
- result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
121
- ma = torch.max(result)
122
- mi = torch.min(result)
123
- result = (result-mi)/(ma-mi)
124
- # image to pil
125
- im_array = (result*255).cpu().data.numpy().astype(np.uint8)
126
- pil_im = Image.fromarray(np.squeeze(im_array))
127
- # paste the mask on the original image
128
- new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
129
- new_im.paste(orig_image, mask=pil_im)
130
- # new_orig_image = orig_image.convert('RGBA')
131
-
132
- return new_im
 
133
 
134
 
135
  title = """<h1 style="text-align: center;">Product description generator</h1>"""
 
106
  orig_image = Image.fromarray(image)
107
  w,h = orig_im_size = orig_image.size
108
  image = resize_image(orig_image)
109
+ return image
110
+ # im_np = np.array(image)
111
+ # im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
112
+ # im_tensor = torch.unsqueeze(im_tensor,0)
113
+ # im_tensor = torch.divide(im_tensor,255.0)
114
+ # im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
115
+ # if torch.cuda.is_available():
116
+ # im_tensor=im_tensor.cuda()
117
+
118
+ # #inference
119
+ # result=net(im_tensor)
120
+ # # post process
121
+ # result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
122
+ # ma = torch.max(result)
123
+ # mi = torch.min(result)
124
+ # result = (result-mi)/(ma-mi)
125
+ # # image to pil
126
+ # im_array = (result*255).cpu().data.numpy().astype(np.uint8)
127
+ # pil_im = Image.fromarray(np.squeeze(im_array))
128
+ # # paste the mask on the original image
129
+ # new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
130
+ # new_im.paste(orig_image, mask=pil_im)
131
+ # # new_orig_image = orig_image.convert('RGBA')
132
+
133
+ # return new_im
134
 
135
 
136
  title = """<h1 style="text-align: center;">Product description generator</h1>"""