prateekbh commited on
Commit
32a8e2c
·
verified ·
1 Parent(s): aeba1bd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -25
app.py CHANGED
@@ -105,31 +105,30 @@ def process(image):
105
  orig_image = image
106
  w,h = orig_im_size = orig_image.size
107
  image = resize_image(orig_image)
108
- return image;
109
- # im_np = np.array(image)
110
- # im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
111
- # im_tensor = torch.unsqueeze(im_tensor,0)
112
- # im_tensor = torch.divide(im_tensor,255.0)
113
- # im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
114
- # if torch.cuda.is_available():
115
- # im_tensor=im_tensor.cuda()
116
-
117
- # #inference
118
- # result=net(im_tensor)
119
- # # post process
120
- # result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
121
- # ma = torch.max(result)
122
- # mi = torch.min(result)
123
- # result = (result-mi)/(ma-mi)
124
- # # image to pil
125
- # im_array = (result*255).cpu().data.numpy().astype(np.uint8)
126
- # pil_im = Image.fromarray(np.squeeze(im_array))
127
- # # paste the mask on the original image
128
- # new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
129
- # new_im.paste(orig_image, mask=pil_im)
130
- # # new_orig_image = orig_image.convert('RGBA')
131
-
132
- # return image
133
 
134
 
135
  title = """<h1 style="text-align: center;">Product description generator</h1>"""
 
105
  orig_image = image
106
  w,h = orig_im_size = orig_image.size
107
  image = resize_image(orig_image)
108
+ im_np = np.array(image)
109
+ im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
110
+ im_tensor = torch.unsqueeze(im_tensor,0)
111
+ im_tensor = torch.divide(im_tensor,255.0)
112
+ im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
113
+ if torch.cuda.is_available():
114
+ im_tensor=im_tensor.cuda()
115
+
116
+ #inference
117
+ result=net(im_tensor)
118
+ # post process
119
+ result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
120
+ ma = torch.max(result)
121
+ mi = torch.min(result)
122
+ result = (result-mi)/(ma-mi)
123
+ # image to pil
124
+ im_array = (result*255).cpu().data.numpy().astype(np.uint8)
125
+ pil_im = Image.fromarray(np.squeeze(im_array))
126
+ # paste the mask on the original image
127
+ new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
128
+ new_im.paste(orig_image, mask=pil_im)
129
+ # new_orig_image = orig_image.convert('RGBA')
130
+
131
+ return image
 
132
 
133
 
134
  title = """<h1 style="text-align: center;">Product description generator</h1>"""