File size: 3,224 Bytes
563f98d
bc3802f
 
7d58261
 
 
563f98d
 
e0c81f0
563f98d
bc3802f
 
 
 
 
 
 
 
 
7d58261
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc3802f
 
 
fb7a950
 
b220b28
 
fb7a950
 
b220b28
fb7a950
 
bc3802f
60eaa44
 
 
 
 
 
b220b28
 
e80c4ee
bc3802f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import gradio as gr
import spaces
import argparse
import torch
from transformers import AutoModel, AutoProcessor
from transformers import StoppingCriteria, TextIteratorStreamer, StoppingCriteriaList


device = "cuda:0" if torch.cuda.is_available() else "cpu"


title = """<h1 style="text-align: center;">Product description generator</h1>"""
css = """
div#col-container {
    margin: 0 auto;
    max-width: 840px;
}
"""

model = AutoModel.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True).to(device)
processor = AutoProcessor.from_pretrained("unum-cloud/uform-gen2-qwen-500m", trust_remote_code=True)

class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [151645]
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False

@torch.no_grad()
def response(message, history, image):
    stop = StopOnTokens()

    messages = [{"role": "system", "content": "You are a helpful assistant."}]

    for user_msg, assistant_msg in history:
        messages.append({"role": "user", "content": user_msg})
        messages.append({"role": "assistant", "content": assistant_msg})

    if len(messages) == 1:
        message = f" <image>{message}"

    messages.append({"role": "user", "content": message})

    model_inputs = processor.tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        return_tensors="pt"
    )

    image = (
            processor.feature_extractor(image)
            .unsqueeze(0)
    )

    attention_mask = torch.ones(
        1, model_inputs.shape[1] + processor.num_image_latents - 1
    )
    
    model_inputs = {
        "input_ids": model_inputs,
        "images": image,
        "attention_mask": attention_mask
    }

    model_inputs = {k: v.to(device) for k, v in model_inputs.items()}

    streamer = TextIteratorStreamer(processor.tokenizer, timeout=30., skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        model_inputs,
        streamer=streamer,
        max_new_tokens=1024,
        stopping_criteria=StoppingCriteriaList([stop])
        )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    history.append([message, ""])
    partial_response = ""
    for new_token in streamer:
        partial_response += new_token
        history[-1][1] = partial_response
        yield history, gr.Button(visible=False), gr.Button(visible=True, interactive=True)

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        image = gr.Image(type="pil")
        submit = gr.Button(value="Upload", variant="primary")
        chat = gr.Chatbot(show_label=False)
        message = gr.Textbox(interactive=True, show_label=False, container=False)
    response_handler = (
        response,
        [message, chat, image],
        [submit]
    )

    postresponse_handler = (
        lambda: (gr.Button(visible=False), gr.Button(visible=True)),
        None,
        [submit]
    )

    event = submit.click(*response_handler)
    event.then(*postresponse_handler)

demo.launch()