from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer, whoami import gradio as gr from dotenv import load_dotenv import os load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") whoami(token=HF_TOKEN) config = PeftConfig.from_pretrained("pranjalpandey/gemma-open-instruct") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b") model = PeftModel.from_pretrained(model, "pranjalpandey/gemma-open-instruct") # model = AutoPeftModelForCausalLM.from_pretrained("pranjalpandey/llama-7b-finetuned-dialogue-summarizer") tokenizer = AutoTokenizer.from_pretrained("pranjalpandey/gemma-open-instruct") model = model.to("cuda") def response(prompt): inputs = tokenizer(prompt, return_tensors="pt").to("cuda") outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=100) return tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("# Response:")[1].strip() ir = gr.Interface( fn=response, inputs=["text"], outputs=["text"], ) ir.launch()