File size: 1,101 Bytes
06a266b
95729b9
 
06a266b
873626b
 
 
 
 
 
 
95729b9
06a266b
 
968c555
06a266b
 
968c555
74123b1
06a266b
 
74123b1
06a266b
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import login
import gradio as gr
from dotenv import load_dotenv
import os


load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")

# whoami(token=HF_TOKEN)

config = PeftConfig.from_pretrained("pranjalpandey/gemma-open-instruct")
model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", token=HF_TOKEN)
model = PeftModel.from_pretrained(model, "pranjalpandey/gemma-open-instruct")
# model = AutoPeftModelForCausalLM.from_pretrained("pranjalpandey/llama-7b-finetuned-dialogue-summarizer")
tokenizer = AutoTokenizer.from_pretrained("pranjalpandey/gemma-open-instruct", token=HF_TOKEN)
# model = model.to("cuda")

def response(prompt):
  inputs = tokenizer(prompt, return_tensors="pt")
  outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=100)
  return tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0].split("# Response:")[1].strip()

ir = gr.Interface(
    fn=response,
    inputs=["text"],
    outputs=["text"],
)

ir.launch()