Update app.py
Browse files
app.py
CHANGED
@@ -1,104 +1,104 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import datetime
|
3 |
-
import pandas as pd
|
4 |
-
from gnews import GNews
|
5 |
-
from transformers import pipeline
|
6 |
-
import plotly.graph_objects as go
|
7 |
-
|
8 |
-
# Load the sentiment analysis model
|
9 |
-
pipe = pipeline("text-classification", model="pramudyalyza/bert-indonesian-finetuned-news
|
10 |
-
|
11 |
-
# Function to process the keyword and get sentiment analysis
|
12 |
-
def process_keyword(keyword):
|
13 |
-
one_week_ago = datetime.datetime.now() - datetime.timedelta(days=7)
|
14 |
-
|
15 |
-
news = GNews(language='id', country='ID', max_results=100)
|
16 |
-
|
17 |
-
search_results = news.get_news(keyword)
|
18 |
-
|
19 |
-
filtered_headlines = []
|
20 |
-
for article in search_results:
|
21 |
-
published_date = datetime.datetime.strptime(article['published date'], '%a, %d %b %Y %H:%M:%S %Z')
|
22 |
-
if published_date > one_week_ago:
|
23 |
-
filtered_headlines.append(article['title'])
|
24 |
-
|
25 |
-
df = pd.DataFrame(filtered_headlines, columns=['title'])
|
26 |
-
df_clean = df.drop_duplicates()
|
27 |
-
|
28 |
-
df_clean['sentiment'] = df_clean['title'].apply(lambda x: pipe(x)[0]['label'])
|
29 |
-
|
30 |
-
positive_count = (df_clean['sentiment'] == 'Positive').sum()
|
31 |
-
negative_count = (df_clean['sentiment'] == 'Negative').sum()
|
32 |
-
neutral_count = (df_clean['sentiment'] == 'Neutral').sum()
|
33 |
-
total_count = len(df_clean)
|
34 |
-
|
35 |
-
return positive_count, negative_count, neutral_count, total_count, df_clean
|
36 |
-
|
37 |
-
# Streamlit app layout
|
38 |
-
st.title("News Sentiment Analysis Dashboard")
|
39 |
-
|
40 |
-
keyword_input = st.text_input("Enter a keyword to search for news", placeholder="Type a keyword...")
|
41 |
-
|
42 |
-
if st.button("Analyze"):
|
43 |
-
if keyword_input:
|
44 |
-
with st.spinner('Scraping and analyzing the data...'):
|
45 |
-
positive_count, negative_count, neutral_count, total_count, df_clean = process_keyword(keyword_input)
|
46 |
-
|
47 |
-
# Create plots
|
48 |
-
fig_positive = go.Figure(go.Indicator(
|
49 |
-
mode="gauge+number",
|
50 |
-
value=positive_count,
|
51 |
-
title={'text': "Positive Sentiment"},
|
52 |
-
gauge={'axis': {'range': [0, total_count]},
|
53 |
-
'bar': {'color': "green"}}
|
54 |
-
))
|
55 |
-
|
56 |
-
fig_negative = go.Figure(go.Indicator(
|
57 |
-
mode="gauge+number",
|
58 |
-
value=negative_count,
|
59 |
-
title={'text': "Negative Sentiment"},
|
60 |
-
gauge={'axis': {'range': [0, total_count]},
|
61 |
-
'bar': {'color': "red"}}
|
62 |
-
))
|
63 |
-
|
64 |
-
fig_neutral = go.Figure(go.Indicator(
|
65 |
-
mode="gauge+number",
|
66 |
-
value=neutral_count,
|
67 |
-
title={'text': "Neutral Sentiment"},
|
68 |
-
gauge={'axis': {'range': [0, total_count]},
|
69 |
-
'bar': {'color': "yellow"}}
|
70 |
-
))
|
71 |
-
|
72 |
-
fig_donut = go.Figure(go.Pie(
|
73 |
-
labels=['Positive', 'Negative', 'Neutral'],
|
74 |
-
values=[positive_count, negative_count, neutral_count],
|
75 |
-
hole=0.5,
|
76 |
-
marker=dict(colors=['green', 'red', 'yellow'])
|
77 |
-
))
|
78 |
-
fig_donut.update_layout(title_text='Sentiment Distribution')
|
79 |
-
|
80 |
-
# Create a horizontal layout using st.columns
|
81 |
-
col1, col2, col3 = st.columns(3)
|
82 |
-
|
83 |
-
# Display results in each column
|
84 |
-
col1.plotly_chart(fig_positive, use_container_width=True)
|
85 |
-
col2.plotly_chart(fig_negative, use_container_width=True)
|
86 |
-
col3.plotly_chart(fig_neutral, use_container_width=True)
|
87 |
-
|
88 |
-
st.plotly_chart(fig_donut, use_container_width=True)
|
89 |
-
|
90 |
-
st.write(f"News articles found: {total_count}")
|
91 |
-
|
92 |
-
# Show DataFrame
|
93 |
-
st.dataframe(df_clean, use_container_width=True)
|
94 |
-
|
95 |
-
# Download CSV
|
96 |
-
csv = df_clean.to_csv(index=False).encode('utf-8')
|
97 |
-
st.download_button(
|
98 |
-
label="Download CSV",
|
99 |
-
data=csv,
|
100 |
-
file_name='news_sentiment_analysis.csv',
|
101 |
-
mime='text/csv',
|
102 |
-
)
|
103 |
-
else:
|
104 |
st.error("Please enter a keyword.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import datetime
|
3 |
+
import pandas as pd
|
4 |
+
from gnews import GNews
|
5 |
+
from transformers import pipeline
|
6 |
+
import plotly.graph_objects as go
|
7 |
+
|
8 |
+
# Load the sentiment analysis model
|
9 |
+
pipe = pipeline("text-classification", model="pramudyalyza/bert-indonesian-finetuned-news")
|
10 |
+
|
11 |
+
# Function to process the keyword and get sentiment analysis
|
12 |
+
def process_keyword(keyword):
|
13 |
+
one_week_ago = datetime.datetime.now() - datetime.timedelta(days=7)
|
14 |
+
|
15 |
+
news = GNews(language='id', country='ID', max_results=100)
|
16 |
+
|
17 |
+
search_results = news.get_news(keyword)
|
18 |
+
|
19 |
+
filtered_headlines = []
|
20 |
+
for article in search_results:
|
21 |
+
published_date = datetime.datetime.strptime(article['published date'], '%a, %d %b %Y %H:%M:%S %Z')
|
22 |
+
if published_date > one_week_ago:
|
23 |
+
filtered_headlines.append(article['title'])
|
24 |
+
|
25 |
+
df = pd.DataFrame(filtered_headlines, columns=['title'])
|
26 |
+
df_clean = df.drop_duplicates()
|
27 |
+
|
28 |
+
df_clean['sentiment'] = df_clean['title'].apply(lambda x: pipe(x)[0]['label'])
|
29 |
+
|
30 |
+
positive_count = (df_clean['sentiment'] == 'Positive').sum()
|
31 |
+
negative_count = (df_clean['sentiment'] == 'Negative').sum()
|
32 |
+
neutral_count = (df_clean['sentiment'] == 'Neutral').sum()
|
33 |
+
total_count = len(df_clean)
|
34 |
+
|
35 |
+
return positive_count, negative_count, neutral_count, total_count, df_clean
|
36 |
+
|
37 |
+
# Streamlit app layout
|
38 |
+
st.title("News Sentiment Analysis Dashboard")
|
39 |
+
|
40 |
+
keyword_input = st.text_input("Enter a keyword to search for news", placeholder="Type a keyword...")
|
41 |
+
|
42 |
+
if st.button("Analyze"):
|
43 |
+
if keyword_input:
|
44 |
+
with st.spinner('Scraping and analyzing the data...'):
|
45 |
+
positive_count, negative_count, neutral_count, total_count, df_clean = process_keyword(keyword_input)
|
46 |
+
|
47 |
+
# Create plots
|
48 |
+
fig_positive = go.Figure(go.Indicator(
|
49 |
+
mode="gauge+number",
|
50 |
+
value=positive_count,
|
51 |
+
title={'text': "Positive Sentiment"},
|
52 |
+
gauge={'axis': {'range': [0, total_count]},
|
53 |
+
'bar': {'color': "green"}}
|
54 |
+
))
|
55 |
+
|
56 |
+
fig_negative = go.Figure(go.Indicator(
|
57 |
+
mode="gauge+number",
|
58 |
+
value=negative_count,
|
59 |
+
title={'text': "Negative Sentiment"},
|
60 |
+
gauge={'axis': {'range': [0, total_count]},
|
61 |
+
'bar': {'color': "red"}}
|
62 |
+
))
|
63 |
+
|
64 |
+
fig_neutral = go.Figure(go.Indicator(
|
65 |
+
mode="gauge+number",
|
66 |
+
value=neutral_count,
|
67 |
+
title={'text': "Neutral Sentiment"},
|
68 |
+
gauge={'axis': {'range': [0, total_count]},
|
69 |
+
'bar': {'color': "yellow"}}
|
70 |
+
))
|
71 |
+
|
72 |
+
fig_donut = go.Figure(go.Pie(
|
73 |
+
labels=['Positive', 'Negative', 'Neutral'],
|
74 |
+
values=[positive_count, negative_count, neutral_count],
|
75 |
+
hole=0.5,
|
76 |
+
marker=dict(colors=['green', 'red', 'yellow'])
|
77 |
+
))
|
78 |
+
fig_donut.update_layout(title_text='Sentiment Distribution')
|
79 |
+
|
80 |
+
# Create a horizontal layout using st.columns
|
81 |
+
col1, col2, col3 = st.columns(3)
|
82 |
+
|
83 |
+
# Display results in each column
|
84 |
+
col1.plotly_chart(fig_positive, use_container_width=True)
|
85 |
+
col2.plotly_chart(fig_negative, use_container_width=True)
|
86 |
+
col3.plotly_chart(fig_neutral, use_container_width=True)
|
87 |
+
|
88 |
+
st.plotly_chart(fig_donut, use_container_width=True)
|
89 |
+
|
90 |
+
st.write(f"News articles found: {total_count}")
|
91 |
+
|
92 |
+
# Show DataFrame
|
93 |
+
st.dataframe(df_clean, use_container_width=True)
|
94 |
+
|
95 |
+
# Download CSV
|
96 |
+
csv = df_clean.to_csv(index=False).encode('utf-8')
|
97 |
+
st.download_button(
|
98 |
+
label="Download CSV",
|
99 |
+
data=csv,
|
100 |
+
file_name='news_sentiment_analysis.csv',
|
101 |
+
mime='text/csv',
|
102 |
+
)
|
103 |
+
else:
|
104 |
st.error("Please enter a keyword.")
|