File size: 5,873 Bytes
0d89bdf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import uuid
import time

# Page configuration
st.set_page_config(
    page_title="ChatBot",
    page_icon="💬",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Initialize session state variables
if "chat_history" not in st.session_state:
    st.session_state.chat_history = {}
if "current_chat_id" not in st.session_state:
    st.session_state.current_chat_id = None
if "messages" not in st.session_state:
    st.session_state.messages = []

# Load model and tokenizer
@st.cache_resource
def load_model():
    model_name = "facebook/blenderbot-400M-distill"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    return tokenizer, model

tokenizer, model = load_model()

# Function to generate response
def generate_response(prompt):
    inputs = tokenizer(prompt, return_tensors="pt")
    with torch.no_grad():
        outputs = model.generate(
            inputs.input_ids,
            max_length=100,
            num_return_sequences=1,
            temperature=0.7,
            top_p=0.9,
            do_sample=True
        )
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Custom CSS
st.markdown("""
<style>
    .main {
        background-color: #f9f9f9;
    }
    .stTextInput>div>div>input {
        background-color: white;
    }
    .chat-message {
        padding: 1rem;
        border-radius: 0.5rem;
        margin-bottom: 1rem;
        display: flex;
        flex-direction: row;
        align-items: flex-start;
    }
    .chat-message.user {
        background-color: #f0f0f0;
    }
    .chat-message.bot {
        background-color: #e6f7ff;
    }
    .chat-message .avatar {
        width: 40px;
        height: 40px;
        border-radius: 50%;
        object-fit: cover;
        margin-right: 1rem;
    }
    .chat-message .message {
        flex-grow: 1;
    }
    .sidebar-chat {
        padding: 0.5rem;
        border-radius: 0.5rem;
        margin-bottom: 0.5rem;
        cursor: pointer;
    }
    .sidebar-chat:hover {
        background-color: #f0f0f0;
    }
    .sidebar-chat.active {
        background-color: #e6f7ff;
        font-weight: bold;
    }
    .stButton>button {
        width: 100%;
    }
</style>
""", unsafe_allow_html=True)

# Sidebar for chat history
with st.sidebar:
    st.title("💬 Chats")
    
    # New chat button
    if st.button("+ New Chat"):
        # Generate a new chat ID
        new_chat_id = str(uuid.uuid4())
        st.session_state.current_chat_id = new_chat_id
        st.session_state.chat_history[new_chat_id] = {
            "title": f"Chat {len(st.session_state.chat_history) + 1}",
            "messages": []
        }
        st.session_state.messages = []
        st.rerun()
    
    st.markdown("---")
    
    # Display chat history
    for chat_id, chat_data in st.session_state.chat_history.items():
        chat_class = "active" if chat_id == st.session_state.current_chat_id else ""
        if st.sidebar.markdown(f"""
        <div class="sidebar-chat {chat_class}" id="{chat_id}">
            {chat_data["title"]}
        </div>
        """, unsafe_allow_html=True):
            st.session_state.current_chat_id = chat_id
            st.session_state.messages = chat_data["messages"]
            st.rerun()

# Main chat interface
st.title("ChatBot")

# Initialize a new chat if none exists
if not st.session_state.current_chat_id and not st.session_state.chat_history:
    new_chat_id = str(uuid.uuid4())
    st.session_state.current_chat_id = new_chat_id
    st.session_state.chat_history[new_chat_id] = {
        "title": "New Chat",
        "messages": []
    }

# Display chat messages
if st.session_state.current_chat_id:
    for i, message in enumerate(st.session_state.messages):
        if message["role"] == "user":
            st.markdown(f"""
            <div class="chat-message user">
                <img class="avatar" src="https://api.dicebear.com/7.x/bottts/svg?seed=user" alt="User Avatar">
                <div class="message">{message["content"]}</div>
            </div>
            """, unsafe_allow_html=True)
        else:
            st.markdown(f"""
            <div class="chat-message bot">
                <img class="avatar" src="https://api.dicebear.com/7.x/bottts/svg?seed=bot" alt="Bot Avatar">
                <div class="message">{message["content"]}</div>
            </div>
            """, unsafe_allow_html=True)

# Chat input
if prompt := st.chat_input("Type your message here..."):
    if st.session_state.current_chat_id:
        # Add user message to chat
        st.session_state.messages.append({"role": "user", "content": prompt})
        
        # Update chat history
        st.session_state.chat_history[st.session_state.current_chat_id]["messages"] = st.session_state.messages
        
        # Update chat title if it's the first message
        if len(st.session_state.messages) == 1:
            st.session_state.chat_history[st.session_state.current_chat_id]["title"] = prompt[:20] + "..." if len(prompt) > 20 else prompt
        
        st.rerun()

# Generate and display bot response for the last user message
if st.session_state.messages and st.session_state.messages[-1]["role"] == "user":
    with st.spinner("Thinking..."):
        # Simulate thinking time
        time.sleep(0.5)
        
        # Generate response
        response = generate_response(st.session_state.messages[-1]["content"])
        
        # Add bot response to chat
        st.session_state.messages.append({"role": "assistant", "content": response})
        
        # Update chat history
        st.session_state.chat_history[st.session_state.current_chat_id]["messages"] = st.session_state.messages
        
        st.rerun()