Delete app.py
Browse files
app.py
DELETED
@@ -1,72 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import torch
|
4 |
-
from datasets import load_dataset
|
5 |
-
|
6 |
-
from transformers import pipeline
|
7 |
-
from transformers import VitsModel, VitsTokenizer
|
8 |
-
|
9 |
-
|
10 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
-
|
12 |
-
# load speech translation checkpoint
|
13 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
model = VitsModel.from_pretrained("facebook/mms-tts-spa")
|
18 |
-
processor = VitsTokenizer.from_pretrained("facebook/mms-tts-spa")
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
def translate(audio):
|
24 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "es","task": "transcribe"})
|
25 |
-
return outputs["text"]
|
26 |
-
|
27 |
-
|
28 |
-
def synthesise(text):
|
29 |
-
inputs = processor(text=text, return_tensors="pt")
|
30 |
-
with torch.no_grad():
|
31 |
-
speech = model(inputs["input_ids"].to(device))
|
32 |
-
return speech.audio[0]
|
33 |
-
|
34 |
-
|
35 |
-
def speech_to_speech_translation(audio):
|
36 |
-
translated_text = translate(audio)
|
37 |
-
synthesised_speech = synthesise(translated_text)
|
38 |
-
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
39 |
-
return 16000, synthesised_speech
|
40 |
-
|
41 |
-
|
42 |
-
title = "Cascaded STST"
|
43 |
-
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
45 |
-
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
-
|
47 |
-

|
48 |
-
"""
|
49 |
-
|
50 |
-
demo = gr.Blocks()
|
51 |
-
|
52 |
-
mic_translate = gr.Interface(
|
53 |
-
fn=speech_to_speech_translation,
|
54 |
-
inputs=gr.Audio(source="microphone", type="filepath"),
|
55 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
56 |
-
title=title,
|
57 |
-
description=description,
|
58 |
-
)
|
59 |
-
|
60 |
-
file_translate = gr.Interface(
|
61 |
-
fn=speech_to_speech_translation,
|
62 |
-
inputs=gr.Audio(source="upload", type="filepath"),
|
63 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
64 |
-
examples=[["./example.wav"]],
|
65 |
-
title=title,
|
66 |
-
description=description,
|
67 |
-
)
|
68 |
-
|
69 |
-
with demo:
|
70 |
-
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
-
|
72 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|