pragsGit commited on
Commit
b30bb77
·
verified ·
1 Parent(s): 56ca173

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -72
app.py DELETED
@@ -1,72 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import torch
4
- from datasets import load_dataset
5
-
6
- from transformers import pipeline
7
- from transformers import VitsModel, VitsTokenizer
8
-
9
-
10
- device = "cuda:0" if torch.cuda.is_available() else "cpu"
11
-
12
- # load speech translation checkpoint
13
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
14
-
15
-
16
-
17
- model = VitsModel.from_pretrained("facebook/mms-tts-spa")
18
- processor = VitsTokenizer.from_pretrained("facebook/mms-tts-spa")
19
-
20
-
21
-
22
-
23
- def translate(audio):
24
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language": "es","task": "transcribe"})
25
- return outputs["text"]
26
-
27
-
28
- def synthesise(text):
29
- inputs = processor(text=text, return_tensors="pt")
30
- with torch.no_grad():
31
- speech = model(inputs["input_ids"].to(device))
32
- return speech.audio[0]
33
-
34
-
35
- def speech_to_speech_translation(audio):
36
- translated_text = translate(audio)
37
- synthesised_speech = synthesise(translated_text)
38
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
39
- return 16000, synthesised_speech
40
-
41
-
42
- title = "Cascaded STST"
43
- description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
- """
49
-
50
- demo = gr.Blocks()
51
-
52
- mic_translate = gr.Interface(
53
- fn=speech_to_speech_translation,
54
- inputs=gr.Audio(source="microphone", type="filepath"),
55
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
56
- title=title,
57
- description=description,
58
- )
59
-
60
- file_translate = gr.Interface(
61
- fn=speech_to_speech_translation,
62
- inputs=gr.Audio(source="upload", type="filepath"),
63
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
64
- examples=[["./example.wav"]],
65
- title=title,
66
- description=description,
67
- )
68
-
69
- with demo:
70
- gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
-
72
- demo.launch()