| import torch | |
| from transformers import pipeline | |
| from transformers import VitsModel, VitsTokenizer | |
| import numpy as np | |
| import gradio as gr | |
| target_dtype = np.int16 | |
| max_range = np.iinfo(target_dtype).max | |
| device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| "automatic-speech-recognition", | |
| model="openai/whisper-base", | |
| device=device | |
| ) | |
| def translate(audio): | |
| outputs = pipe( | |
| audio, | |
| max_new_tokens=256, | |
| generate_kwargs={"task": "transcribe", "language": "de"} | |
| ) | |
| model = VitsModel.from_pretrained("facebook/mms-tts-deu") | |
| tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-deu") | |
| def synthesise(text): | |
| inputs=tokenizer(text, return_tensors="pt") | |
| input_ids = inputs["input_ids"] | |
| with torch.no_grad(): | |
| outputs = model(input_ids) | |
| return outputs["waveform"] | |
| def speech_to_speech_translation(audio): | |
| translated_text = translate(audio) | |
| synthesised_speech = synthesise(translated_text) | |
| synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) | |
| return 16000, synthesised_speech | |
| demo = gr.Blocks() | |
| mic_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="microphone", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| ) | |
| file_translate = gr.Interface( | |
| fn=speech_to_speech_translation, | |
| inputs=gr.Audio(sources="upload", type="filepath"), | |
| outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
| demo.launch(share=True) |