|
import torch |
|
from transformers import pipeline |
|
from transformers import VitsModel, VitsTokenizer |
|
import numpy as np |
|
import gradio as gr |
|
|
|
target_dtype = np.int16 |
|
max_range = np.iinfo(target_dtype).max |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model="openai/whisper-base", |
|
device=device |
|
) |
|
|
|
def translate(audio): |
|
outputs = pipe( |
|
audio, |
|
max_new_tokens=256, |
|
generate_kwargs={"task": "transcribe", "language": "de"} |
|
) |
|
|
|
model = VitsModel.from_pretrained("facebook/mms-tts-deu") |
|
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-deu") |
|
|
|
def synthesise(text): |
|
inputs=tokenizer(text, return_tensors="pt") |
|
input_ids = inputs["input_ids"] |
|
with torch.no_grad(): |
|
outputs = model(input_ids) |
|
return outputs["waveform"] |
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * max_range).astype(np.int16) |
|
return 16000, synthesised_speech |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(sources="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch(share=True) |