pragnakalp's picture
Update app.py
9c0d256
raw
history blame
2.66 kB
import gradio as gr
import requests
import os
import numpy as np
import pandas as pd
import json
import csv
import huggingface_hub
from huggingface_hub import Repository
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
from questiongenerator import QuestionGenerator
qg = QuestionGenerator()
HF_TOKEN = os.environ.get("HF_TOKEN")
DATASET_NAME = "Question_Generation_T5"
DATASET_REPO_URL = f"https://huggingface.co/datasets/pragnakalp/{DATASET_NAME}"
DATA_FILENAME = "que_gen_logs.csv"
DATA_FILE = os.path.join("que_gen_logs", DATA_FILENAME)
DATASET_REPO_ID = "pragnakalp/Question_Generation_T5"
print("is none?", HF_TOKEN is None)
# REPOSITORY_DIR = "data"
# LOCAL_DIR = 'data_local'
# os.makedirs(LOCAL_DIR,exist_ok=True)
try:
hf_hub_download(
repo_id=DATASET_REPO_ID,
filename=DATA_FILENAME,
cache_dir=DATA_DIRNAME,
force_filename=DATA_FILENAME
)
except:
print("file not found")
repo = Repository(
local_dir="que_gen_logs", clone_from=DATASET_REPO_URL, use_auth_token=HF_TOKEN
)
def generate_questions(article,num_que):
result = ''
print("num_que :", num_que)
if num_que == None or num_que == '':
num_que = 5
else:
num_que = num_que
generated_questions_list = qg.generate(article, num_questions=int(num_que))
summarized_data = {
"generated_questions" : generated_questions_list
}
generated_questions = summarized_data.get("generated_questions",'')
add_csv = [article, generated_questions, num_que]
with open(DATA_FILE, "a") as f:
writer = csv.writer(f)
# write the data
writer.writerow(add_csv)
commit_url = repo.push_to_hub()
print(commit_url)
# with open(DATA_FILE, "r") as file:
# data = json.load(file)
# data.append(entry)
# with open(DATA_FILE, "w") as file:
# json.dump(data, file)
# commit_url = repo.push_to_hub()
for q in generated_questions:
print(q)
result = result + q + '\n'
return result
## design 1
inputs=gr.Textbox(lines=5, label="Article/Text",elem_id="inp_div")
total_que = gr.Textbox(label="Number of Question want to generate",elem_id="inp_div")
outputs=gr.Textbox(lines=5, label="Generated Questions",elem_id="inp_div")
demo = gr.Interface(
generate_questions,
[inputs,total_que],
outputs,
title="Question Generation using T5",
description="Feel free to give your feedback",
css=".gradio-container {background-color: lightgray} #inp_div {background-color: #7FB3D5;"
)
demo.launch(enable_queue = False)