Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from gradio_client import Client
|
3 |
+
from langgraph.graph import StateGraph, START, END
|
4 |
+
from typing import TypedDict, Optional
|
5 |
+
import io
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
#OPEN QUESTION: SHOULD WE PASS ALL PARAMS FROM THE ORCHESTRATOR TO THE NODES INSTEAD OF SETTING IN EACH MODULE?
|
11 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
import configparser
|
16 |
+
import logging
|
17 |
+
import os
|
18 |
+
import ast
|
19 |
+
import re
|
20 |
+
from dotenv import load_dotenv
|
21 |
+
|
22 |
+
# Local .env file
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
def getconfig(configfile_path: str):
|
26 |
+
"""
|
27 |
+
Read the config file
|
28 |
+
Params
|
29 |
+
----------------
|
30 |
+
configfile_path: file path of .cfg file
|
31 |
+
"""
|
32 |
+
config = configparser.ConfigParser()
|
33 |
+
try:
|
34 |
+
config.read_file(open(configfile_path))
|
35 |
+
return config
|
36 |
+
except:
|
37 |
+
logging.warning("config file not found")
|
38 |
+
|
39 |
+
|
40 |
+
def get_auth(provider: str) -> dict:
|
41 |
+
"""Get authentication configuration for different providers"""
|
42 |
+
auth_configs = {
|
43 |
+
"huggingface": {"api_key": os.getenv("HF_TOKEN")},
|
44 |
+
"qdrant": {"api_key": os.getenv("QDRANT_API_KEY")},
|
45 |
+
}
|
46 |
+
|
47 |
+
provider = provider.lower() # Normalize to lowercase
|
48 |
+
|
49 |
+
if provider not in auth_configs:
|
50 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
51 |
+
|
52 |
+
auth_config = auth_configs[provider]
|
53 |
+
api_key = auth_config.get("api_key")
|
54 |
+
|
55 |
+
if not api_key:
|
56 |
+
logging.warning(f"No API key found for provider '{provider}'. Please set the appropriate environment variable.")
|
57 |
+
auth_config["api_key"] = None
|
58 |
+
|
59 |
+
return auth_config
|
60 |
+
|
61 |
+
|
62 |
+
# Define the state schema
|
63 |
+
class GraphState(TypedDict):
|
64 |
+
query: str
|
65 |
+
context: str
|
66 |
+
result: str
|
67 |
+
# Add orchestrator-level parameters (addressing your open question)
|
68 |
+
reports_filter: str
|
69 |
+
sources_filter: str
|
70 |
+
subtype_filter: str
|
71 |
+
year_filter: str
|
72 |
+
|
73 |
+
# node 2: retriever
|
74 |
+
def retrieve_node(state: GraphState) -> GraphState:
|
75 |
+
client = Client("giz/chatfed_retriever", hf_token=HF_TOKEN) # HF repo name
|
76 |
+
context = client.predict(
|
77 |
+
query=state["query"],
|
78 |
+
reports_filter=state.get("reports_filter", ""),
|
79 |
+
sources_filter=state.get("sources_filter", ""),
|
80 |
+
subtype_filter=state.get("subtype_filter", ""),
|
81 |
+
year_filter=state.get("year_filter", ""),
|
82 |
+
api_name="/retrieve"
|
83 |
+
)
|
84 |
+
return {"context": context}
|
85 |
+
|
86 |
+
# node 3: generator
|
87 |
+
def generate_node(state: GraphState) -> GraphState:
|
88 |
+
client = Client("giz/chatfed_generator", hf_token=HF_TOKEN)
|
89 |
+
result = client.predict(
|
90 |
+
query=state["query"],
|
91 |
+
context=state["context"],
|
92 |
+
api_name="/generate"
|
93 |
+
)
|
94 |
+
return {"result": result}
|
95 |
+
|
96 |
+
# build the graph
|
97 |
+
workflow = StateGraph(GraphState)
|
98 |
+
|
99 |
+
# Add nodes
|
100 |
+
workflow.add_node("retrieve", retrieve_node)
|
101 |
+
workflow.add_node("generate", generate_node)
|
102 |
+
|
103 |
+
# Add edges
|
104 |
+
workflow.add_edge(START, "retrieve")
|
105 |
+
workflow.add_edge("retrieve", "generate")
|
106 |
+
workflow.add_edge("generate", END)
|
107 |
+
|
108 |
+
# Compile the graph
|
109 |
+
graph = workflow.compile()
|
110 |
+
|
111 |
+
# Single tool for processing queries
|
112 |
+
def process_query(
|
113 |
+
query: str,
|
114 |
+
reports_filter: str = "",
|
115 |
+
sources_filter: str = "",
|
116 |
+
subtype_filter: str = "",
|
117 |
+
year_filter: str = ""
|
118 |
+
) -> str:
|
119 |
+
"""
|
120 |
+
Execute the ChatFed orchestration pipeline to process a user query.
|
121 |
+
|
122 |
+
This function orchestrates a two-step workflow:
|
123 |
+
1. Retrieve relevant context using the ChatFed retriever service with optional filters
|
124 |
+
2. Generate a response using the ChatFed generator service with the retrieved context
|
125 |
+
|
126 |
+
Args:
|
127 |
+
query (str): The user's input query/question to be processed
|
128 |
+
reports_filter (str, optional): Filter for specific report types. Defaults to "".
|
129 |
+
sources_filter (str, optional): Filter for specific data sources. Defaults to "".
|
130 |
+
subtype_filter (str, optional): Filter for document subtypes. Defaults to "".
|
131 |
+
year_filter (str, optional): Filter for specific years. Defaults to "".
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
str: The generated response from the ChatFed generator service
|
135 |
+
"""
|
136 |
+
initial_state = {
|
137 |
+
"query": query,
|
138 |
+
"context": "",
|
139 |
+
"result": "",
|
140 |
+
"reports_filter": reports_filter or "",
|
141 |
+
"sources_filter": sources_filter or "",
|
142 |
+
"subtype_filter": subtype_filter or "",
|
143 |
+
"year_filter": year_filter or ""
|
144 |
+
}
|
145 |
+
final_state = graph.invoke(initial_state)
|
146 |
+
return final_state["result"]
|
147 |
+
|
148 |
+
# Simple testing interface
|
149 |
+
ui = gr.Interface(
|
150 |
+
fn=process_query,
|
151 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter query here"),
|
152 |
+
outputs="text",
|
153 |
+
flagging_mode="never"
|
154 |
+
)
|
155 |
+
|
156 |
+
# Add a function to generate the graph visualization
|
157 |
+
def get_graph_visualization():
|
158 |
+
"""Generate and return the LangGraph workflow visualization as a PIL Image."""
|
159 |
+
# Generate the graph as PNG bytes
|
160 |
+
graph_png_bytes = graph.get_graph().draw_mermaid_png()
|
161 |
+
|
162 |
+
# Convert bytes to PIL Image for Gradio display
|
163 |
+
graph_image = Image.open(io.BytesIO(graph_png_bytes))
|
164 |
+
return graph_image
|
165 |
+
|
166 |
+
|
167 |
+
# Guidance for ChatUI - can be removed later. Questionable whether front end even necessary. Maybe nice to show the graph.
|
168 |
+
with gr.Blocks(title="ChatFed Orchestrator") as demo:
|
169 |
+
gr.Markdown("# ChatFed Orchestrator")
|
170 |
+
gr.Markdown("This LangGraph server exposes MCP endpoints for the ChatUI module to call (which triggers the graph).")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
# Left column - Graph visualization
|
174 |
+
with gr.Column(scale=1):
|
175 |
+
gr.Markdown("**Workflow Visualization**")
|
176 |
+
graph_display = gr.Image(
|
177 |
+
value=get_graph_visualization(),
|
178 |
+
label="LangGraph Workflow",
|
179 |
+
interactive=False,
|
180 |
+
height=300
|
181 |
+
)
|
182 |
+
|
183 |
+
# Add a refresh button for the graph
|
184 |
+
refresh_graph_btn = gr.Button("🔄 Refresh Graph", size="sm")
|
185 |
+
refresh_graph_btn.click(
|
186 |
+
fn=get_graph_visualization,
|
187 |
+
outputs=graph_display
|
188 |
+
)
|
189 |
+
|
190 |
+
# Right column - Interface and documentation
|
191 |
+
with gr.Column(scale=2):
|
192 |
+
gr.Markdown("**Available MCP Tools:**")
|
193 |
+
|
194 |
+
with gr.Accordion("MCP Endpoint Information", open=True):
|
195 |
+
gr.Markdown(f"""
|
196 |
+
**MCP Server Endpoint:** https://giz-chatfed-orchestrator.hf.space/gradio_api/mcp/sse
|
197 |
+
|
198 |
+
**For ChatUI Integration:**
|
199 |
+
```python
|
200 |
+
from gradio_client import Client
|
201 |
+
|
202 |
+
# Connect to orchestrator
|
203 |
+
orchestrator_client = Client("https://giz-chatfed-orchestrator.hf.space")
|
204 |
+
|
205 |
+
# Basic usage (no filters)
|
206 |
+
response = orchestrator_client.predict(
|
207 |
+
query="query",
|
208 |
+
api_name="/process_query"
|
209 |
+
)
|
210 |
+
|
211 |
+
# Advanced usage with any combination of filters
|
212 |
+
response = orchestrator_client.predict(
|
213 |
+
query="query",
|
214 |
+
reports_filter="annual_reports",
|
215 |
+
sources_filter="internal",
|
216 |
+
year_filter="2024",
|
217 |
+
api_name="/process_query"
|
218 |
+
)
|
219 |
+
```
|
220 |
+
""")
|
221 |
+
|
222 |
+
with gr.Accordion("Quick Testing Interface", open=True):
|
223 |
+
ui.render()
|
224 |
+
|
225 |
+
if __name__ == "__main__":
|
226 |
+
demo.launch(
|
227 |
+
server_name="0.0.0.0",
|
228 |
+
server_port=7860,
|
229 |
+
mcp_server=True,
|
230 |
+
show_error=True
|
231 |
+
)
|