Spaces:
Running
Running
python verbose run command in dockerfile fixes output hang; minor fixes for mcp documention
Browse files- Dockerfile +3 -3
- app/main.py +56 -25
- requirements.txt +3 -7
Dockerfile
CHANGED
@@ -8,10 +8,10 @@ COPY requirements.txt .
|
|
8 |
RUN pip install --no-cache-dir -r requirements.txt
|
9 |
|
10 |
# copy app
|
11 |
-
COPY app
|
12 |
|
13 |
# expose Gradio default port
|
14 |
EXPOSE 7860
|
15 |
|
16 |
-
# launch
|
17 |
-
CMD ["python", "app.py"]
|
|
|
8 |
RUN pip install --no-cache-dir -r requirements.txt
|
9 |
|
10 |
# copy app
|
11 |
+
COPY app ./app
|
12 |
|
13 |
# expose Gradio default port
|
14 |
EXPOSE 7860
|
15 |
|
16 |
+
# launch with unbuffered output
|
17 |
+
CMD ["python", "-u", "app/main.py"]
|
app/main.py
CHANGED
@@ -1,49 +1,80 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
-
from langgraph import
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
client = Client("giz/chatfed_retriever") # HF repo name
|
8 |
-
|
9 |
-
query=query,
|
10 |
reports_filter="",
|
11 |
sources_filter="",
|
12 |
subtype_filter="",
|
13 |
year_filter="",
|
14 |
api_name="/retrieve"
|
15 |
)
|
|
|
16 |
|
17 |
-
# node 2:
|
18 |
-
def generate_node(
|
19 |
client = Client("giz/chatfed_generator")
|
20 |
-
|
21 |
-
query=query,
|
22 |
-
context=context,
|
23 |
api_name="/generate"
|
24 |
)
|
|
|
25 |
|
26 |
# build the graph
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
# expose a simple Gradio interface that drives the graph
|
33 |
def pipeline(query: str):
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
fn=pipeline,
|
42 |
-
inputs=gr.Textbox(lines=2, placeholder="Enter
|
43 |
outputs="text",
|
44 |
-
title="
|
45 |
)
|
46 |
|
47 |
if __name__ == "__main__":
|
48 |
-
|
49 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_client import Client
|
3 |
+
from langgraph.graph import StateGraph, START, END
|
4 |
+
from typing import TypedDict
|
5 |
|
6 |
+
# Define the state schema
|
7 |
+
class GraphState(TypedDict):
|
8 |
+
query: str
|
9 |
+
context: str
|
10 |
+
result: str
|
11 |
+
|
12 |
+
# node 1: retriever
|
13 |
+
def retrieve_node(state: GraphState) -> GraphState:
|
14 |
client = Client("giz/chatfed_retriever") # HF repo name
|
15 |
+
context = client.predict(
|
16 |
+
query=state["query"],
|
17 |
reports_filter="",
|
18 |
sources_filter="",
|
19 |
subtype_filter="",
|
20 |
year_filter="",
|
21 |
api_name="/retrieve"
|
22 |
)
|
23 |
+
return {"context": context}
|
24 |
|
25 |
+
# node 2: generator
|
26 |
+
def generate_node(state: GraphState) -> GraphState:
|
27 |
client = Client("giz/chatfed_generator")
|
28 |
+
result = client.predict(
|
29 |
+
query=state["query"],
|
30 |
+
context=state["context"],
|
31 |
api_name="/generate"
|
32 |
)
|
33 |
+
return {"result": result}
|
34 |
|
35 |
# build the graph
|
36 |
+
workflow = StateGraph(GraphState)
|
37 |
+
|
38 |
+
# Add nodes
|
39 |
+
workflow.add_node("retrieve", retrieve_node)
|
40 |
+
workflow.add_node("generate", generate_node)
|
41 |
+
|
42 |
+
# Add edges
|
43 |
+
workflow.add_edge(START, "retrieve")
|
44 |
+
workflow.add_edge("retrieve", "generate")
|
45 |
+
workflow.add_edge("generate", END)
|
46 |
+
|
47 |
+
# Compile the graph
|
48 |
+
graph = workflow.compile()
|
49 |
|
|
|
50 |
def pipeline(query: str):
|
51 |
+
"""
|
52 |
+
Execute the ChatFed orchestration pipeline to process a user query.
|
53 |
+
|
54 |
+
This function orchestrates a two-step workflow:
|
55 |
+
1. Retrieve relevant context using the ChatFed retriever service
|
56 |
+
2. Generate a response using the ChatFed generator service with the retrieved context
|
57 |
+
|
58 |
+
Args:
|
59 |
+
query (str): The user's input query/question to be processed
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
str: The generated response from the ChatFed generator service
|
63 |
+
"""
|
64 |
+
# run the graph with the initial state
|
65 |
+
initial_state = {"query": query, "context": "", "result": ""}
|
66 |
+
final_state = graph.invoke(initial_state)
|
67 |
+
return final_state["result"]
|
68 |
|
69 |
+
ui = gr.Interface(
|
70 |
fn=pipeline,
|
71 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter query here"),
|
72 |
outputs="text",
|
73 |
+
title="ChatFed Orchestrator",
|
74 |
)
|
75 |
|
76 |
if __name__ == "__main__":
|
77 |
+
ui.launch(server_name="0.0.0.0",
|
78 |
+
server_port=7860,
|
79 |
+
mcp_server=True,
|
80 |
+
show_error=True)
|
requirements.txt
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
gradio[mcp]
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
sentence-transformers
|
6 |
-
gradio_client>=0.10.0
|
7 |
-
huggingface_hub>=0.20.0
|
8 |
-
torch
|
|
|
1 |
gradio[mcp]
|
2 |
+
gradio_client>=1.0.0
|
3 |
+
langgraph>=0.2.0
|
4 |
+
|
|
|
|
|
|
|
|