|
from pathlib import Path |
|
import numpy as np |
|
import gradio as gr |
|
import requests |
|
from typing import List |
|
|
|
|
|
COLUMN_MIN_MAX = { |
|
"Age": (18, 100), |
|
"Blood_Glucose_Level": (0, 300), |
|
"Blood_Pressure_Systolic": (80, 200), |
|
"Blood_Pressure_Diastolic": (40, 120), |
|
"BMI": (10, 50), |
|
"Condition_Severity": (1, 10), |
|
"Gender": (0, 2), |
|
"Ethnicity": (0, 5), |
|
"Geographic_Location": (0, 6), |
|
"Smoking_Status": (0, 2), |
|
"Diagnoses_ICD10": (0, 5), |
|
"Medications": (0, 7), |
|
"Allergies": (0, 5), |
|
"Previous_Treatments": (0, 5), |
|
"Alcohol_Consumption": (0, 3), |
|
"Exercise_Habits": (0, 4), |
|
"Diet": (0, 5), |
|
"Functional_Status": (0, 2), |
|
"Previous_Trial_Participation": (0, 1), |
|
} |
|
|
|
|
|
additional_categories = { |
|
"Gender": ["Male", "Female", "Other"], |
|
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"], |
|
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"], |
|
"Smoking_Status": ["Never", "Former", "Current"], |
|
"Diagnoses_ICD10": ["Actinic keratosis", "Melanoma", "Dermatofibroma", "Vascular lesion","None"], |
|
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"], |
|
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"], |
|
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"], |
|
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"], |
|
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"], |
|
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"], |
|
"Functional_Status": ["Independent", "Assisted", "Dependent"], |
|
"Previous_Trial_Participation": ["Yes", "No"] |
|
} |
|
|
|
|
|
min_age_input = gr.Number(label="Minimum Age", value=18, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1]) |
|
max_age_input = gr.Number(label="Maximum Age", value=100, minimum=COLUMN_MIN_MAX["Age"][0], maximum=COLUMN_MIN_MAX["Age"][1]) |
|
|
|
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender", value=["Male"]) |
|
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity", value=["White"]) |
|
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location", value=["North America"]) |
|
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Skin Diagnosis", value=["Actinic keratosis"]) |
|
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications", value=["Metformin"]) |
|
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies", value=["Peanuts"]) |
|
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments", value=["None"]) |
|
|
|
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1]) |
|
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=3, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1]) |
|
blood_glucose_level_input = gr.Number(label="Blood Glucose Level", value=100, minimum=COLUMN_MIN_MAX["Blood_Glucose_Level"][0], maximum=COLUMN_MIN_MAX["Blood_Glucose_Level"][1]) |
|
|
|
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1]) |
|
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1]) |
|
blood_pressure_systolic_input = gr.Number(label="Blood Pressure (Systolic)", value=120, minimum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Systolic"][1]) |
|
|
|
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=0, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1]) |
|
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=3, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1]) |
|
blood_pressure_diastolic_input = gr.Number(label="Blood Pressure (Diastolic)", value=80, minimum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][0], maximum=COLUMN_MIN_MAX["Blood_Pressure_Diastolic"][1]) |
|
|
|
min_bmi_input = gr.Number(label="Minimum BMI", value=0, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1]) |
|
max_bmi_input = gr.Number(label="Maximum BMI", value=3, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1]) |
|
bmi_input = gr.Number(label="BMI", value=20, minimum=COLUMN_MIN_MAX["BMI"][0], maximum=COLUMN_MIN_MAX["BMI"][1]) |
|
|
|
min_condition_severity_input = gr.Number(label="Condition Severity", value=5, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1]) |
|
max_condition_severity_input = gr.Number(label="Condition Severity", value=5, minimum=COLUMN_MIN_MAX["Condition_Severity"][0], maximum=COLUMN_MIN_MAX["Condition_Severity"][1]) |
|
condition_severity_input = gr.Number(label="Condition Severity", value=5, minimum=0, maximum=10) |
|
|
|
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status", value=["Never"]) |
|
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption", value=["None"]) |
|
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits", value=["Sedentary"]) |
|
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet", value=["Omnivore"]) |
|
|
|
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status", value=["Independent"]) |
|
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation", value=["No"]) |
|
|
|
SERVER_URL = "https://affordable-prot-bind-clarke.trycloudflare.com/requirements/create" |
|
|
|
def encode_categorical_data(data: List[str], category_name: str) -> List[int]: |
|
"""Encodes a list of categorical values into their corresponding indices based on additional_categories.""" |
|
sub_cats = additional_categories.get(category_name, []) |
|
encoded_data = [] |
|
for value in data: |
|
if value in sub_cats: |
|
encoded_index = sub_cats.index(value) |
|
|
|
min_val, max_val = COLUMN_MIN_MAX.get(category_name, (0, len(sub_cats)-1)) |
|
if min_val <= encoded_index <= max_val: |
|
encoded_data.append(encoded_index) |
|
else: |
|
print(f"Encoded value for {category_name}='{value}' is out of range. Setting to 0.") |
|
encoded_data.append(0) |
|
else: |
|
print(f"Value '{value}' not recognized in category '{category_name}'. Setting to 0.") |
|
encoded_data.append(0) |
|
return encoded_data |
|
|
|
def process_researcher_data( |
|
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, |
|
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic, |
|
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption, |
|
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation |
|
): |
|
|
|
encoded_gender = encode_categorical_data(gender, "Gender") |
|
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity") |
|
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location") |
|
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10") |
|
encoded_medications = encode_categorical_data(medications, "Medications") |
|
encoded_allergies = encode_categorical_data(allergies, "Allergies") |
|
encoded_previous_treatments = encode_categorical_data(previous_treatments, "Previous_Treatments") |
|
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status") |
|
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption") |
|
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits") |
|
encoded_diet = encode_categorical_data(diet, "Diet") |
|
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status") |
|
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation") |
|
|
|
|
|
requirements = [] |
|
|
|
|
|
numerical_fields = [ |
|
("Age", min_age, "greater_than"), |
|
("Age", max_age, "less_than"), |
|
("Blood_Glucose_Level", min_blood_glucose_level, "greater_than"), |
|
("Blood_Glucose_Level", max_blood_glucose_level, "less_than"), |
|
("Blood_Pressure_Systolic", min_blood_pressure_systolic, "greater_than"), |
|
("Blood_Pressure_Systolic", max_blood_pressure_systolic, "less_than"), |
|
("Blood_Pressure_Diastolic", min_blood_pressure_diastolic, "greater_than"), |
|
("Blood_Pressure_Diastolic", max_blood_pressure_diastolic, "less_than"), |
|
("BMI", min_bmi, "greater_than"), |
|
("BMI", max_bmi, "less_than"), |
|
("Condition_Severity", min_condition_severity, "greater_than"), |
|
("Condition_Severity", max_condition_severity, "less_than"), |
|
] |
|
|
|
for field, value, comparison in numerical_fields: |
|
if value is not None: |
|
|
|
min_val, max_val = COLUMN_MIN_MAX.get(field, (None, None)) |
|
if min_val is not None and max_val is not None: |
|
if not (min_val <= value <= max_val): |
|
print(f"Value for {field}={value} is out of range ({min_val}, {max_val}). Adjusting to fit within range.") |
|
value = max(min(value, max_val), min_val) |
|
requirements.append({ |
|
"column_name": field, |
|
"value": value, |
|
"comparison_type": comparison |
|
}) |
|
|
|
|
|
categorical_fields = [ |
|
("Gender", encoded_gender, "equal"), |
|
("Ethnicity", encoded_ethnicity, "equal"), |
|
("Geographic_Location", encoded_geographic_location, "equal"), |
|
("Diagnoses_ICD10", encoded_diagnoses_icd10, "equal"), |
|
("Medications", encoded_medications, "equal"), |
|
("Allergies", encoded_allergies, "equal"), |
|
("Previous_Treatments", encoded_previous_treatments, "equal"), |
|
("Smoking_Status", encoded_smoking_status, "equal"), |
|
("Alcohol_Consumption", encoded_alcohol_consumption, "equal"), |
|
("Exercise_Habits", encoded_exercise_habits, "equal"), |
|
("Diet", encoded_diet, "equal"), |
|
("Functional_Status", encoded_functional_status, "equal"), |
|
("Previous_Trial_Participation", encoded_previous_trial_participation, "equal"), |
|
] |
|
|
|
for field, encoded_values, comparison in categorical_fields: |
|
min_val, max_val = COLUMN_MIN_MAX.get(field, (0, len(additional_categories[field])-1)) |
|
for encoded in encoded_values: |
|
if min_val <= encoded <= max_val: |
|
requirements.append({ |
|
"column_name": field, |
|
"value": encoded, |
|
"comparison_type": comparison |
|
}) |
|
else: |
|
print(f"Encoded value {encoded} for {field} is out of range ({min_val}, {max_val}). Skipping.") |
|
|
|
|
|
|
|
|
|
|
|
payload = { |
|
"model_name": "second_model", |
|
"requirements": requirements |
|
} |
|
|
|
print("Payload to send:", payload) |
|
|
|
|
|
try: |
|
res = requests.post(SERVER_URL, json=payload) |
|
res.raise_for_status() |
|
except requests.exceptions.HTTPError as http_err: |
|
print(f"HTTP error occurred: {http_err}") |
|
return f"HTTP error occurred: {http_err}" |
|
except Exception as err: |
|
print(f"Other error occurred: {err}") |
|
return f"Other error occurred: {err}" |
|
|
|
|
|
try: |
|
response = res.json() |
|
print("Server response:", response) |
|
except ValueError: |
|
print("Response is not in JSON format.") |
|
return "Response is not in JSON format." |
|
|
|
return response.get("message", "No message received from server") |
|
|
|
|
|
researcher_demo = gr.Interface( |
|
fn=process_researcher_data, |
|
inputs=[ |
|
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, |
|
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input, |
|
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input, |
|
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input, |
|
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, |
|
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input |
|
], |
|
outputs="text", |
|
title="Clinical Researcher Criteria Form", |
|
description="Please enter the criteria for the type of patients you are looking for." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
researcher_demo.launch(share=False) |
|
|