|
from pathlib import Path |
|
import numpy as np |
|
import gradio as gr |
|
import requests |
|
import json |
|
|
|
from typing import List |
|
|
|
|
|
additional_categories = { |
|
"Gender": ["Male", "Female", "Other"], |
|
"Ethnicity": ["White", "Black or African American", "Asian", "American Indian or Alaska Native", "Native Hawaiian or Other Pacific Islander", "Other"], |
|
"Geographic_Location": ["North America", "South America", "Europe", "Asia", "Africa", "Australia", "Antarctica"], |
|
"Smoking_Status": ["Never", "Former", "Current"], |
|
"Diagnoses_ICD10": ["E11.9", "I10", "J45.909", "M54.5", "F32.9", "K21.9"], |
|
"Medications": ["Metformin", "Lisinopril", "Atorvastatin", "Amlodipine", "Omeprazole", "Simvastatin", "Levothyroxine", "None"], |
|
"Allergies": ["Penicillin", "Peanuts", "Shellfish", "Latex", "Bee stings", "None"], |
|
"Previous_Treatments": ["Chemotherapy", "Radiation Therapy", "Surgery", "Physical Therapy", "Immunotherapy", "None"], |
|
"Alcohol_Consumption": ["None", "Occasionally", "Regularly", "Heavy"], |
|
"Exercise_Habits": ["Sedentary", "Light", "Moderate", "Active", "Very Active"], |
|
"Diet": ["Omnivore", "Vegetarian", "Vegan", "Pescatarian", "Keto", "Mediterranean"], |
|
"Functional_Status": ["Independent", "Assisted", "Dependent"], |
|
"Previous_Trial_Participation": ["Yes", "No"] |
|
} |
|
|
|
|
|
min_age_input = gr.Number(label="Minimum Age", value=18) |
|
max_age_input = gr.Number(label="Maximum Age", value=100) |
|
gender_input = gr.CheckboxGroup(choices=additional_categories["Gender"], label="Gender") |
|
ethnicity_input = gr.CheckboxGroup(choices=additional_categories["Ethnicity"], label="Ethnicity") |
|
geographic_location_input = gr.CheckboxGroup(choices=additional_categories["Geographic_Location"], label="Geographic Location") |
|
diagnoses_icd10_input = gr.CheckboxGroup(choices=additional_categories["Diagnoses_ICD10"], label="Diagnoses (ICD-10)") |
|
medications_input = gr.CheckboxGroup(choices=additional_categories["Medications"], label="Medications") |
|
allergies_input = gr.CheckboxGroup(choices=additional_categories["Allergies"], label="Allergies") |
|
previous_treatments_input = gr.CheckboxGroup(choices=additional_categories["Previous_Treatments"], label="Previous Treatments") |
|
min_blood_glucose_level_input = gr.Number(label="Minimum Blood Glucose Level", value=0) |
|
max_blood_glucose_level_input = gr.Number(label="Maximum Blood Glucose Level", value=300) |
|
min_blood_pressure_systolic_input = gr.Number(label="Minimum Blood Pressure (Systolic)", value=80) |
|
max_blood_pressure_systolic_input = gr.Number(label="Maximum Blood Pressure (Systolic)", value=200) |
|
min_blood_pressure_diastolic_input = gr.Number(label="Minimum Blood Pressure (Diastolic)", value=40) |
|
max_blood_pressure_diastolic_input = gr.Number(label="Maximum Blood Pressure (Diastolic)", value=120) |
|
min_bmi_input = gr.Number(label="Minimum BMI", value=10) |
|
max_bmi_input = gr.Number(label="Maximum BMI", value=50) |
|
smoking_status_input = gr.CheckboxGroup(choices=additional_categories["Smoking_Status"], label="Smoking Status") |
|
alcohol_consumption_input = gr.CheckboxGroup(choices=additional_categories["Alcohol_Consumption"], label="Alcohol Consumption") |
|
exercise_habits_input = gr.CheckboxGroup(choices=additional_categories["Exercise_Habits"], label="Exercise Habits") |
|
diet_input = gr.CheckboxGroup(choices=additional_categories["Diet"], label="Diet") |
|
min_condition_severity_input = gr.Number(label="Minimum Condition Severity", value=1) |
|
max_condition_severity_input = gr.Number(label="Maximum Condition Severity", value=10) |
|
functional_status_input = gr.CheckboxGroup(choices=additional_categories["Functional_Status"], label="Functional Status") |
|
previous_trial_participation_input = gr.CheckboxGroup(choices=additional_categories["Previous_Trial_Participation"], label="Previous Trial Participation") |
|
|
|
|
|
def encode_categorical_data(data: List[str], category_name: str) -> List[int]: |
|
"""Encodes a list of categorical values into their corresponding indices based on additional_categories.""" |
|
sub_cats = additional_categories.get(category_name, []) |
|
encoded_data = [] |
|
for value in data: |
|
if value in sub_cats: |
|
encoded_data.append(sub_cats.index(value) + 1) |
|
else: |
|
encoded_data.append(0) |
|
return encoded_data |
|
|
|
|
|
def process_researcher_data( |
|
min_age, max_age, gender, ethnicity, geographic_location, diagnoses_icd10, medications, allergies, previous_treatments, |
|
min_blood_glucose_level, max_blood_glucose_level, min_blood_pressure_systolic, max_blood_pressure_systolic, |
|
min_blood_pressure_diastolic, max_blood_pressure_diastolic, min_bmi, max_bmi, smoking_status, alcohol_consumption, |
|
exercise_habits, diet, min_condition_severity, max_condition_severity, functional_status, previous_trial_participation |
|
): |
|
|
|
encoded_gender = encode_categorical_data(gender, "Gender") |
|
encoded_ethnicity = encode_categorical_data(ethnicity, "Ethnicity") |
|
encoded_geographic_location = encode_categorical_data(geographic_location, "Geographic_Location") |
|
encoded_diagnoses_icd10 = encode_categorical_data(diagnoses_icd10, "Diagnoses_ICD10") |
|
encoded_smoking_status = encode_categorical_data(smoking_status, "Smoking_Status") |
|
encoded_alcohol_consumption = encode_categorical_data(alcohol_consumption, "Alcohol_Consumption") |
|
encoded_exercise_habits = encode_categorical_data(exercise_habits, "Exercise_Habits") |
|
encoded_diet = encode_categorical_data(diet, "Diet") |
|
encoded_functional_status = encode_categorical_data(functional_status, "Functional_Status") |
|
encoded_previous_trial_participation = encode_categorical_data(previous_trial_participation, "Previous_Trial_Participation") |
|
|
|
|
|
requirements = [] |
|
|
|
|
|
if min_age is not None: |
|
requirements.append({ |
|
"column_name": "Age", |
|
"value": int(min_age), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_age is not None: |
|
requirements.append({ |
|
"column_name": "Age", |
|
"value": int(max_age), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
if min_blood_glucose_level is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Glucose_Level", |
|
"value": int(min_blood_glucose_level), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_blood_glucose_level is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Glucose_Level", |
|
"value": int(max_blood_glucose_level), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
if min_blood_pressure_systolic is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Pressure_Systolic", |
|
"value": int(min_blood_pressure_systolic), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_blood_pressure_systolic is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Pressure_Systolic", |
|
"value": int(max_blood_pressure_systolic), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
if min_blood_pressure_diastolic is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Pressure_Diastolic", |
|
"value": int(min_blood_pressure_diastolic), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_blood_pressure_diastolic is not None: |
|
requirements.append({ |
|
"column_name": "Blood_Pressure_Diastolic", |
|
"value": int(max_blood_pressure_diastolic), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
if min_bmi is not None: |
|
requirements.append({ |
|
"column_name": "BMI", |
|
"value": float(min_bmi), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_bmi is not None: |
|
requirements.append({ |
|
"column_name": "BMI", |
|
"value": float(max_bmi), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
if min_condition_severity is not None: |
|
requirements.append({ |
|
"column_name": "Condition_Severity", |
|
"value": int(min_condition_severity), |
|
"comparison_type": "greater_than" |
|
}) |
|
if max_condition_severity is not None: |
|
requirements.append({ |
|
"column_name": "Condition_Severity", |
|
"value": int(max_condition_severity), |
|
"comparison_type": "less_than" |
|
}) |
|
|
|
|
|
for gender_value in encoded_gender: |
|
if gender_value > 0: |
|
requirements.append({ |
|
"column_name": "Gender", |
|
"value": gender_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for ethnicity_value in encoded_ethnicity: |
|
if ethnicity_value > 0: |
|
requirements.append({ |
|
"column_name": "Ethnicity", |
|
"value": ethnicity_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for location_value in encoded_geographic_location: |
|
if location_value > 0: |
|
requirements.append({ |
|
"column_name": "Geographic_Location", |
|
"value": location_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for diagnosis_value in encoded_diagnoses_icd10: |
|
if diagnosis_value > 0: |
|
requirements.append({ |
|
"column_name": "Diagnoses_ICD10", |
|
"value": diagnosis_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for smoking_status_value in encoded_smoking_status: |
|
if smoking_status_value > 0: |
|
requirements.append({ |
|
"column_name": "Smoking_Status", |
|
"value": smoking_status_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for alcohol_value in encoded_alcohol_consumption: |
|
if alcohol_value > 0: |
|
requirements.append({ |
|
"column_name": "Alcohol_Consumption", |
|
"value": alcohol_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for exercise_value in encoded_exercise_habits: |
|
if exercise_value > 0: |
|
requirements.append({ |
|
"column_name": "Exercise_Habits", |
|
"value": exercise_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for diet_value in encoded_diet: |
|
if diet_value > 0: |
|
requirements.append({ |
|
"column_name": "Diet", |
|
"value": diet_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for status in encoded_functional_status: |
|
if status > 0: |
|
requirements.append({ |
|
"column_name": "Functional_Status", |
|
"value": status, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for participation in encoded_previous_trial_participation: |
|
if participation > 0: |
|
requirements.append({ |
|
"column_name": "Previous_Trial_Participation", |
|
"value": participation, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
|
|
for medication in medications: |
|
encoded_medications = encode_categorical_data([medication], "Medications") |
|
for med_value in encoded_medications: |
|
if med_value > 0: |
|
requirements.append({ |
|
"column_name": "Medications", |
|
"value": med_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for allergy in allergies: |
|
encoded_allergies = encode_categorical_data([allergy], "Allergies") |
|
for allergy_value in encoded_allergies: |
|
if allergy_value > 0: |
|
requirements.append({ |
|
"column_name": "Allergies", |
|
"value": allergy_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
for treatment in previous_treatments: |
|
encoded_treatments = encode_categorical_data([treatment], "Previous_Treatments") |
|
for treatment_value in encoded_treatments: |
|
if treatment_value > 0: |
|
requirements.append({ |
|
"column_name": "Previous_Treatments", |
|
"value": treatment_value, |
|
"comparison_type": "equal" |
|
}) |
|
|
|
|
|
payload = { |
|
"model_name": "fhe_model_v1", |
|
"requirements": requirements |
|
} |
|
|
|
|
|
payload = json.dumps(payload) |
|
|
|
print("Payload:", payload) |
|
|
|
|
|
SERVER_URL = "https://ppaihack-match.azurewebsites.net/requirements/create" |
|
|
|
|
|
try: |
|
res = requests.post(SERVER_URL, json=payload) |
|
res.raise_for_status() |
|
except requests.exceptions.HTTPError as http_err: |
|
print(f"HTTP error occurred: {http_err}") |
|
return f"HTTP error occurred: {http_err}" |
|
except Exception as err: |
|
print(f"Other error occurred: {err}") |
|
return f"Other error occurred: {err}" |
|
|
|
|
|
try: |
|
response = res.json() |
|
print("Server response:", response) |
|
except ValueError: |
|
print("Response is not in JSON format.") |
|
return "Response is not in JSON format." |
|
|
|
return response.get("message", "No message received from server") |
|
|
|
|
|
|
|
researcher_demo = gr.Interface( |
|
fn=process_researcher_data, |
|
inputs=[ |
|
min_age_input, max_age_input, gender_input, ethnicity_input, geographic_location_input, diagnoses_icd10_input, |
|
medications_input, allergies_input, previous_treatments_input, min_blood_glucose_level_input, |
|
max_blood_glucose_level_input, min_blood_pressure_systolic_input, max_blood_pressure_systolic_input, |
|
min_blood_pressure_diastolic_input, max_blood_pressure_diastolic_input, min_bmi_input, max_bmi_input, |
|
smoking_status_input, alcohol_consumption_input, exercise_habits_input, diet_input, |
|
min_condition_severity_input, max_condition_severity_input, functional_status_input, previous_trial_participation_input |
|
], |
|
outputs="text", |
|
title="Clinical Researcher Criteria Form", |
|
description="Please enter the criteria for the type of patients you are looking for." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
researcher_demo.launch(share=True) |
|
|