File size: 4,577 Bytes
efd4869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import concrete.ml\n",
"import torch\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Training: \n",
" 1. Gather dataset of pictures\n",
" 2. Preprocess the data\n",
" 3. Find pretrained model \n",
" 4. Segment Pretrained model into client-model and encrypted-server-model \n",
" 5. Retrain the server-side model on 8 bits\n",
" 6. Take output of the client model and truncate the floats to 8 bits\n",
"\n",
"Production\n",
" 1. Take a picture :)\n",
" 2. Evaluate client model on photo (clear)\n",
" 3. Truncate to 8 bits\n",
" 4. Encrypt \n",
" 5. Send encrypted data to server\n",
" 6. Send back encrypted result\n",
" 7. decrypt result\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 1: Load Pretrained MobileNet"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"from torchvision import models\n",
"\n",
"# Load the pretrained MobileNet model\n",
"mobilenet = models.mobilenet_v2(pretrained=True)\n",
"\n",
"# Set model to evaluation mode\n",
"mobilenet.eval()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 2: Segment the Pretrained Model into Client and Server Parts"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Client model - extracting up to the 10th layer (or any other cutoff)\n",
"client_model = nn.Sequential(*list(mobilenet.features.children())[:10])\n",
"\n",
"# Server model - the remaining layers\n",
"server_model = nn.Sequential(*list(mobilenet.features.children())[10:], mobilenet.classifier)\n",
"\n",
"# Freeze client model parameters (no need to retrain)\n",
"for param in client_model.parameters():\n",
" param.requires_grad = False"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 3: Quantize the Server-Side Model to 8 Bits\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch.quantization import quantize_dynamic\n",
"\n",
"# Quantize the server model\n",
"server_model_quantized = quantize_dynamic(\n",
" server_model, # Model to be quantized\n",
" {nn.Linear}, # Layers to quantize (we quantize fully connected layers here)\n",
" dtype=torch.qint8 # Quantize to 8-bit\n",
")\n",
"\n",
"server_model_quantized.eval()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 4: Truncate the Client Model Output to 8 Bits"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"def truncate_to_8_bits(tensor):\n",
" # Scale the tensor to the range [0, 255]\n",
" tensor = torch.clamp(tensor, min=0, max=1)\n",
" tensor = tensor * 255.0\n",
" tensor = tensor.to(torch.uint8) # Convert to 8-bit integers\n",
" return tensor\n",
"\n",
"# Example input\n",
"input_image = torch.randn(1, 3, 224, 224) # A random image input\n",
"\n",
"# Client-side computation\n",
"client_output = client_model(input_image)\n",
"\n",
"# Truncate the output to 8 bits\n",
"client_output_8bit = truncate_to_8_bits(client_output)\n",
"\n",
"# The truncated output is now ready to be passed to the server\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Step 5: Server Model Inference on Quantized Data\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Ensure client output is in float format before feeding into server\n",
"client_output_8bit = client_output_8bit.float() / 255.0 # Rescale to [0, 1]\n",
"\n",
"# Run inference on the server-side model\n",
"server_output = server_model_quantized(client_output_8bit)\n",
"\n",
"# Output from the server model (class probabilities, etc.)\n",
"print(server_output)\n"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|