File size: 4,577 Bytes
efd4869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import concrete.ml\n",
    "import torch\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Training: \n",
    "    1. Gather dataset of pictures\n",
    "    2. Preprocess the data\n",
    "    3. Find pretrained model \n",
    "    4. Segment Pretrained model into client-model and encrypted-server-model \n",
    "    5. Retrain the server-side model on 8 bits\n",
    "    6. Take output of the client model and truncate the floats to 8 bits\n",
    "\n",
    "Production\n",
    "    1. Take a picture :)\n",
    "    2. Evaluate client model on photo (clear)\n",
    "    3. Truncate to 8 bits\n",
    "    4. Encrypt \n",
    "    5. Send encrypted data to server\n",
    "    6. Send back encrypted result\n",
    "    7. decrypt result\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 1: Load Pretrained MobileNet"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import torch\n",
    "import torch.nn as nn\n",
    "from torchvision import models\n",
    "\n",
    "# Load the pretrained MobileNet model\n",
    "mobilenet = models.mobilenet_v2(pretrained=True)\n",
    "\n",
    "# Set model to evaluation mode\n",
    "mobilenet.eval()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 2: Segment the Pretrained Model into Client and Server Parts"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Client model - extracting up to the 10th layer (or any other cutoff)\n",
    "client_model = nn.Sequential(*list(mobilenet.features.children())[:10])\n",
    "\n",
    "# Server model - the remaining layers\n",
    "server_model = nn.Sequential(*list(mobilenet.features.children())[10:], mobilenet.classifier)\n",
    "\n",
    "# Freeze client model parameters (no need to retrain)\n",
    "for param in client_model.parameters():\n",
    "    param.requires_grad = False"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 3: Quantize the Server-Side Model to 8 Bits\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.quantization import quantize_dynamic\n",
    "\n",
    "# Quantize the server model\n",
    "server_model_quantized = quantize_dynamic(\n",
    "    server_model,  # Model to be quantized\n",
    "    {nn.Linear},   # Layers to quantize (we quantize fully connected layers here)\n",
    "    dtype=torch.qint8  # Quantize to 8-bit\n",
    ")\n",
    "\n",
    "server_model_quantized.eval()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 4: Truncate the Client Model Output to 8 Bits"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "\n",
    "def truncate_to_8_bits(tensor):\n",
    "    # Scale the tensor to the range [0, 255]\n",
    "    tensor = torch.clamp(tensor, min=0, max=1)\n",
    "    tensor = tensor * 255.0\n",
    "    tensor = tensor.to(torch.uint8)  # Convert to 8-bit integers\n",
    "    return tensor\n",
    "\n",
    "# Example input\n",
    "input_image = torch.randn(1, 3, 224, 224)  # A random image input\n",
    "\n",
    "# Client-side computation\n",
    "client_output = client_model(input_image)\n",
    "\n",
    "# Truncate the output to 8 bits\n",
    "client_output_8bit = truncate_to_8_bits(client_output)\n",
    "\n",
    "# The truncated output is now ready to be passed to the server\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Step 5: Server Model Inference on Quantized Data\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Ensure client output is in float format before feeding into server\n",
    "client_output_8bit = client_output_8bit.float() / 255.0  # Rescale to [0, 1]\n",
    "\n",
    "# Run inference on the server-side model\n",
    "server_output = server_model_quantized(client_output_8bit)\n",
    "\n",
    "# Output from the server model (class probabilities, etc.)\n",
    "print(server_output)\n"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "name": "python"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}