Spaces:
Sleeping
Sleeping
File size: 6,628 Bytes
5f7b796 fcea57d 5f7b796 846bf0f 5f7b796 846bf0f 5f7b796 846bf0f 5f7b796 bf56fe9 5f7b796 bf56fe9 3f8e821 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# -*- coding: utf-8 -*-
#@title scirpts
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer,util
from pythainlp import Tokenizer
import pickle
import evaluate
from sklearn.metrics.pairwise import cosine_similarity,euclidean_distances
import gradio as gr
print(torch.cuda.is_available())
__all__ = [
"mdeberta",
"wangchanberta-hyp", # Best model
]
predict_method = [
"faiss",
"faissWithModel",
"cosineWithModel",
"semanticSearchWithModel",
]
DEFAULT_MODEL='wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL='intfloat/multilingual-e5-base'
MODEL_DICT = {
'wangchanberta': 'Chananchida/wangchanberta-th-wiki-qa_ref-params',
'wangchanberta-hyp': 'Chananchida/wangchanberta-th-wiki-qa_hyp-params',
'mdeberta': 'Chananchida/mdeberta-v3-th-wiki-qa_ref-params',
'mdeberta-hyp': 'Chananchida/mdeberta-v3-th-wiki-qa_hyp-params',
}
DATA_PATH='models/dataset.xlsx'
EMBEDDINGS_PATH='models/embeddings.pkl'
class ChatbotModel:
def __init__(self, model=DEFAULT_MODEL):
self._chatbot = Chatbot()
self._chatbot.load_data()
self._chatbot.load_model(model)
self._chatbot.load_embedding_model(DEFAULT_SENTENCE_EMBEDDING_MODEL)
self._chatbot.set_vectors()
self._chatbot.set_index()
def chat(self, question):
return self._chatbot.answer_question(question)
def eval(self,model,predict_method):
return self._chatbot.eval(model_name=model,predict_method=predict_method)
class Chatbot:
def __init__(self):
# Initialize variables
self.df = None
self.test_df = None
self.model = None
self.model_name = None
self.tokenizer = None
self.embedding_model = None
self.vectors = None
self.index = None
self.k = 1 # top k most similar
def load_data(self, path: str = DATA_PATH):
self.df = pd.read_excel(path, sheet_name='Default')
self.df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
# print('Load data done')
def load_model(self, model_name: str = DEFAULT_MODEL):
self.model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
self.model_name = model_name
# print('Load model done')
def load_embedding_model(self, model_name: str = DEFAULT_SENTENCE_EMBEDDING_MODEL):
if torch.cuda.is_available(): # Check if GPU is available
self.embedding_model = SentenceTransformer(model_name, device='cpu')
else: self.embedding_model = SentenceTransformer(model_name)
# print('Load sentence embedding model done')
def set_vectors(self):
self.vectors = self.prepare_sentences_vector(self.load_embeddings(EMBEDDINGS_PATH))
def set_index(self):
if torch.cuda.is_available(): # Check if GPU is available
res = faiss.StandardGpuResources()
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, self.index)
gpu_index_flat.add(self.vectors)
self.index = gpu_index_flat
else: # If GPU is not available, use CPU-based Faiss index
self.index = faiss.IndexFlatL2(self.vectors.shape[1])
self.index.add(self.vectors)
def get_embeddings(self, text_list):
return self.embedding_model.encode(text_list)
def prepare_sentences_vector(self, encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def store_embeddings(self, embeddings):
with open('models/embeddings.pkl', "wb") as fOut:
pickle.dump({'sentences': self.df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
print('Store embeddings done')
def load_embeddings(self, file_path):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
print('Load (questions) embeddings done')
return stored_embeddings
def model_pipeline(self, question, similar_context):
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = self.tokenizer.decode(predict_answer_tokens)
return Answer
def faiss_search(self, question_vector):
distances, indices = self.index.search(question_vector, self.k)
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
return similar_questions, similar_contexts, distances, indices
def predict(self,message):
message = message.strip()
question_vector = self.get_embeddings(message)
question_vector=self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances,indices = self.faiss_search(question_vector)
Answer = self.model_pipeline(similar_questions, similar_contexts)
return Answer
bot = ChatbotModel()
"""#Gradio"""
# EXAMPLE = ["หลิน ไห่เฟิง มีชื่อเรียกอีกชื่อว่าอะไร" , "ใครเป็นผู้ตั้งสภาเศรษฐกิจโลกขึ้นในปี พ.ศ. 2514 โดยทุกปีจะมีการประชุมที่ประเทศสวิตเซอร์แลนด์", "โปรดิวเซอร์ของอัลบั้มตลอดกาล ของวงคีรีบูนคือใคร", "สกุลเดิมของหม่อมครูนุ่ม นวรัตน ณ อยุธยา คืออะไร"]
demo = gr.Interface(fn=bot._chatbot.predict, inputs="text", outputs="text", title="CE66-04_Thai Question Answering System by using Deep Learning")
demo.launch()
|