Spaces:
Sleeping
Sleeping
File size: 19,489 Bytes
d2ecb95 65303a1 d2ecb95 b86a43f d2ecb95 65303a1 f09c3e1 65303a1 f6a46b7 65303a1 d2ecb95 65303a1 31bc28f 65303a1 1f0e176 65303a1 d2ecb95 65303a1 d2ecb95 65303a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 |
# @title web interface demo
# import random
# import gradio as gr
# import time
# import numpy as np
# import pandas as pd
# import torch
# import faiss
# from sklearn.preprocessing import normalize
# from transformers import AutoTokenizer, AutoModelForQuestionAnswering
# from sentence_transformers import SentenceTransformer, util
# from pythainlp import Tokenizer
# import pickle
# import re
# from pythainlp.tokenize import sent_tokenize
# DEFAULT_MODEL = 'wangchanberta-hyp'
# DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
# MODEL_DICT = {
# 'wangchanberta': 'Chananchida/wangchanberta-xet_ref-params',
# 'wangchanberta-hyp': 'Chananchida/wangchanberta-xet_hyp-params',
# }
# EMBEDDINGS_PATH = 'data/embeddings.pkl'
# DATA_PATH='data/dataset.xlsx'
# def load_data(path=DATA_PATH):
# df = pd.read_excel(path, sheet_name='Default')
# df['Context'] = pd.read_excel(path, sheet_name='mdeberta')['Context']
# print(len(df))
# print('Load data done')
# return df
# def load_model(model_name=DEFAULT_MODEL):
# model = AutoModelForQuestionAnswering.from_pretrained(MODEL_DICT[model_name])
# tokenizer = AutoTokenizer.from_pretrained(MODEL_DICT[model_name])
# print('Load model done')
# return model, tokenizer
# def load_embedding_model(model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL):
# # if torch.cuda.is_available():
# # embedding_model = SentenceTransformer(model_name, device='cuda')
# # else:
# embedding_model = SentenceTransformer(model_name)
# print('Load sentence embedding model done')
# return embedding_model
# def set_index(vector):
# if torch.cuda.is_available():
# res = faiss.StandardGpuResources()
# index = faiss.IndexFlatL2(vector.shape[1])
# gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
# gpu_index_flat.add(vector)
# index = gpu_index_flat
# else:
# index = faiss.IndexFlatL2(vector.shape[1])
# index.add(vector)
# return index
# def get_embeddings(embedding_model, text_list):
# return embedding_model.encode(text_list)
# def prepare_sentences_vector(encoded_list):
# encoded_list = [i.reshape(1, -1) for i in encoded_list]
# encoded_list = np.vstack(encoded_list).astype('float32')
# encoded_list = normalize(encoded_list)
# return encoded_list
# def store_embeddings(df, embeddings):
# with open('embeddings.pkl', "wb") as fOut:
# pickle.dump({'sentences': df['Question'], 'embeddings': embeddings}, fOut, protocol=pickle.HIGHEST_PROTOCOL)
# print('Store embeddings done')
# def load_embeddings(file_path=EMBEDDINGS_PATH):
# with open(file_path, "rb") as fIn:
# stored_data = pickle.load(fIn)
# stored_sentences = stored_data['sentences']
# stored_embeddings = stored_data['embeddings']
# print('Load (questions) embeddings done')
# return stored_embeddings
# def model_pipeline(model, tokenizer, question, similar_context):
# inputs = tokenizer(question, similar_context, return_tensors="pt")
# with torch.no_grad():
# outputs = model(**inputs)
# answer_start_index = outputs.start_logits.argmax()
# answer_end_index = outputs.end_logits.argmax()
# predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
# Answer = tokenizer.decode(predict_answer_tokens)
# return Answer.replace('<unk>','@')
# def faiss_search(index, question_vector, k=1):
# distances, indices = index.search(question_vector, k)
# return distances,indices
# def create_segment_index(vector):
# segment_index = faiss.IndexFlatL2(vector.shape[1])
# segment_index.add(vector)
# return segment_index
# def predict_faiss(model, tokenizer, embedding_model, df, question, index):
# t = time.time()
# question = question.strip()
# question_vector = get_embeddings(embedding_model, question)
# question_vector = prepare_sentences_vector([question_vector])
# distances,indices = faiss_search(index, question_vector)
# Answers = [df['Answer'][i] for i in indices[0]]
# _time = time.time() - t
# output = {
# "user_question": question,
# "answer": Answers[0],
# "totaltime": round(_time, 3),
# "score": round(distances[0][0], 4)
# }
# return output
# def predict(model, tokenizer, embedding_model, df, question, index):
# t = time.time()
# question = question.strip()
# question_vector = get_embeddings(embedding_model, question)
# question_vector = prepare_sentences_vector([question_vector])
# distances,indices = faiss_search(index, question_vector)
# # Answer = model_pipeline(model, tokenizer, df['Question'][indices[0][0]], df['Context'][indices[0][0]])
# Answer = model_pipeline(model, tokenizer, question, df['Context'][indices[0][0]])
# _time = time.time() - t
# output = {
# "user_question": question,
# "answer": Answer,
# "totaltime": round(_time, 3),
# "distance": round(distances[0][0], 4)
# }
# return Answer
# def predict_test(model, tokenizer, embedding_model, df, question, index): # sent_tokenize pythainlp
# t = time.time()
# question = question.strip()
# question_vector = get_embeddings(embedding_model, question)
# question_vector = prepare_sentences_vector([question_vector])
# distances,indices = faiss_search(index, question_vector)
# mostSimContext = df['Context'][indices[0][0]]
# pattern = r'(?<=\s{10}).*'
# matches = re.search(pattern, mostSimContext, flags=re.DOTALL)
# if matches:
# mostSimContext = matches.group(0)
# mostSimContext = mostSimContext.strip()
# mostSimContext = re.sub(r'\s+', ' ', mostSimContext)
# segments = sent_tokenize(mostSimContext, engine="crfcut")
# segment_embeddings = get_embeddings(embedding_model, segments)
# segment_embeddings = prepare_sentences_vector(segment_embeddings)
# segment_index = create_segment_index(segment_embeddings)
# _distances,_indices = faiss_search(segment_index, question_vector)
# mostSimSegment = segments[_indices[0][0]]
# Answer = model_pipeline(model, tokenizer,question,mostSimSegment)
# if len(Answer) <= 2:
# Answer = mostSimSegment
# # Find the start and end indices of mostSimSegment within mostSimContext
# start_index = mostSimContext.find(Answer)
# end_index = start_index + len(Answer)
# print(f"answer {len(Answer)} => {Answer} || startIndex =>{start_index} || endIndex =>{end_index}")
# print(f"mostSimContext{len(mostSimContext)}=>{mostSimContext}\nsegments{len(segments)}=>{segments}\nmostSimSegment{len(mostSimSegment)}=>{mostSimSegment}")
# _time = time.time() - t
# output = {
# "user_question": question,
# "answer": df['Answer'][indices[0][0]],
# "totaltime": round(_time, 3),
# "distance": round(distances[0][0], 4),
# "highlight_start": start_index,
# "highlight_end": end_index
# }
# return output
# def highlight_text(text, start_index, end_index):
# if start_index < 0:
# start_index = 0
# if end_index > len(text):
# end_index = len(text)
# highlighted_text = ""
# for i, char in enumerate(text):
# if i == start_index:
# highlighted_text += "<mark>"
# highlighted_text += char
# if i == end_index - 1:
# highlighted_text += "</mark>"
# return highlighted_text
# def chat_interface_before(question, history):
# response = predict(model, tokenizer, embedding_model, df, question, index)
# return response
# def chat_interface_after(question, history):
# response = predict_test(model, tokenizer, embedding_model, df, question, index)
# highlighted_answer = highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
# return highlighted_answer
# examples=[
# 'ขอเลขที่บัญชีของบริษัทหน่อย',
# 'บริษัทตั้งอยู่ที่ถนนอะไร',
# 'ขอช่องทางติดตามข่าวสารทาง Line หน่อย',
# 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม',
# 'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
# # 'ช่องทางติดตามข่าวสารของเรา',
# ]
# demo_before = gr.ChatInterface(fn=chat_interface_before,
# examples=examples)
# demo_after = gr.ChatInterface(fn=chat_interface_after,
# examples=examples)
# interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])
# if __name__ == "__main__":
# # Load your model, tokenizer, data, and index here...
# df = load_data()
# model, tokenizer = load_model('wangchanberta-hyp')
# embedding_model = load_embedding_model()
# index = set_index(prepare_sentences_vector(load_embeddings(EMBEDDINGS_PATH)))
# interface.launch()
import random
import gradio as gr
import time
import numpy as np
import pandas as pd
import torch
import faiss
from sklearn.preprocessing import normalize
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from sentence_transformers import SentenceTransformer, util
from pythainlp import Tokenizer
import pickle
import re
from pythainlp.tokenize import sent_tokenize
DEFAULT_MODEL = 'wangchanberta-hyp'
DEFAULT_SENTENCE_EMBEDDING_MODEL = 'intfloat/multilingual-e5-base'
MODEL_DICT = 'Chananchida/wangchanberta-xet_hyp-params'
EMBEDDINGS_PATH = 'data/embeddings.pkl'
DATA_PATH='data/dataset.xlsx'
class ChatBot:
SHEET_NAME_MDEBERTA = 'mdeberta'
SHEET_NAME_DEFAULT = 'Default'
UNKNOWN_ANSWERS = ["กรุณาลงรายระเอียดมากกว่านี้ได้มั้ยคะ", "ขอโทษค่ะลูกค้า ดิฉันไม่ทราบจริง ๆ"]
def __init__(self, df_path=None, model_path=None, tokenizer_path=None, embedding_model_name=None, embeddingsPath=None):
self.df = None
self.model = None
self.tokenizer = None
self.embedding_model = None
self.index = None
self.k = 5
if all(arg is not None for arg in (df_path, model_path, tokenizer_path, embedding_model_name, embeddingsPath)):
self.set_df(df_path)
self.set_model(model_path)
self.set_tokenizer(tokenizer_path)
self.set_embedding_model(embedding_model_name)
sentences_vector = self.load_embeddings(embeddingsPath)
repared_vector = self.prepare_sentences_vector(sentences_vector)
self.set_index(repared_vector)
def set_index(self, vector):
if torch.cuda.is_available(): # Check if GPU is available
res = faiss.StandardGpuResources()
index = faiss.IndexFlatL2(vector.shape[1])
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index)
gpu_index_flat.add(vector)
self.index = gpu_index_flat
else: # If GPU is not available, use CPU-based Faiss index
self.index = faiss.IndexFlatL2(vector.shape[1])
self.index.add(vector)
return self.index
def set_df(self, path):
self.df = pd.read_excel(path, sheet_name=self.SHEET_NAME_DEFAULT)
self.df.rename(columns={'Response': 'Answer'}, inplace=True)
self.df['Context'] = pd.read_excel(path, self.SHEET_NAME_MDEBERTA)['Context']
def set_model(self, model):
self.model = AutoModelForQuestionAnswering.from_pretrained(model)
def set_tokenizer(self, tokenizer):
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
def set_embedding_model(self, model):
self.embedding_model = SentenceTransformer(model)
def set_k(self, k_value):
self.k = k_value
def get_df(self):
return self.df
def get_model(self):
return self.model
def get_tokenizer(self):
return self.tokenizer
def get_embedding_model(self):
return self.embedding_model
def get_index(self):
return self.index
def get_k(self):
return self.k
def get_embeddings(self, text_list):
return self.embedding_model.encode(text_list)
def prepare_sentences_vector(self, encoded_list):
encoded_list = [i.reshape(1, -1) for i in encoded_list]
encoded_list = np.vstack(encoded_list).astype('float32')
encoded_list = normalize(encoded_list)
return encoded_list
def load_embeddings(self, file_path):
with open(file_path, "rb") as fIn:
stored_data = pickle.load(fIn)
stored_sentences = stored_data['sentences']
stored_embeddings = stored_data['embeddings']
return stored_embeddings
def model_pipeline(self, question, similar_context):
inputs = self.tokenizer(question, similar_context, return_tensors="pt")
with torch.no_grad():
outputs = self.model(**inputs)
answer_start_index = outputs.start_logits.argmax()
answer_end_index = outputs.end_logits.argmax()
predict_answer_tokens = inputs.input_ids[0, answer_start_index: answer_end_index + 1]
Answer = self.tokenizer.decode(predict_answer_tokens)
return Answer.replace('<unk>','@')
def faiss_search(self, index, question_vector):
if index is None:
raise ValueError("Index has not been initialized.")
distances, indices = index.search(question_vector, self.k)
similar_questions = [self.df['Question'][indices[0][i]] for i in range(self.k)]
similar_contexts = [self.df['Context'][indices[0][i]] for i in range(self.k)]
return similar_questions, similar_contexts, distances, indices
def faiss_segment_search(self, index, question_vector, x=1):
if index is None:
raise ValueError("Index has not been initialized.")
distances, indices = index.search(question_vector, x)
return distances, indices
def create_segment_index(self, vector):
segment_index = faiss.IndexFlatL2(vector.shape[1])
segment_index.add(vector)
return segment_index
def predict_test(self, question):
list_context_for_show = []
list_distance_for_show = []
list_similar_question = []
question = question.strip()
question_vector = self.get_embeddings([question])
question_vector = self.prepare_sentences_vector([question_vector])
similar_questions, similar_contexts, distances, indices = self.faiss_search(self.index, question_vector)
mostSimContext = similar_contexts[0]
pattern = r'(?<=\s{10}).*'
matches = re.search(pattern, mostSimContext, flags=re.DOTALL)
if matches:
mostSimContext = matches.group(0)
mostSimContext = mostSimContext.strip()
mostSimContext = re.sub(r'\s+', ' ', mostSimContext)
segments = sent_tokenize(mostSimContext, engine="crfcut")
segment_embeddings = self.get_embeddings(segments)
segment_embeddings = self.prepare_sentences_vector(segment_embeddings)
segment_index = self.create_segment_index(segment_embeddings)
_distances, _indices = self.faiss_segment_search(segment_index, question_vector)
mostSimSegment = segments[_indices[0][0]]
print(f"_indices => {_indices[0][0]}")
answer = self.model_pipeline(question, mostSimSegment)
if len(answer) <= 2:
answer = mostSimSegment
start_index = mostSimContext.find(answer)
end_index = start_index + len(answer)
print(f"mostSimContext {len(mostSimContext)} =>{mostSimContext}\nsegments {len(segments)} =>{segments}\nmostSimSegment {len(mostSimSegment)} =>{mostSimSegment}")
print(f"answer {len(answer)} => {answer} || startIndex =>{start_index} || endIndex =>{end_index}")
for i in range(min(5, self.k)):
index = indices[0][i]
similar_question = similar_questions[i]
similar_context = similar_contexts[i]
list_similar_question.append(similar_question)
list_context_for_show.append(similar_context)
list_distance_for_show.append(str(1 - distances[0][i]))
distance = list_distance_for_show[0]
if float(distance) < 0.5:
answer = random.choice(self.UNKNOWN_ANSWERS)
output = {
"user_question": question,
"answer": self.df['Answer'][indices[0][0]],
"distance": distance,
"highlight_start": start_index,
"highlight_end": end_index,
"list_context": list_context_for_show,
"list_distance": list_distance_for_show
}
return output
def highlight_text(self, text, start_index, end_index):
if start_index < 0:
start_index = 0
if end_index > len(text):
end_index = len(text)
highlighted_text = ""
for i, char in enumerate(text):
if i == start_index:
highlighted_text += "<mark>"
highlighted_text += char
if i == end_index - 1:
highlighted_text += "</mark>"
return highlighted_text
def chat_interface_before(self, question, history):
response = self.predict(question)
return response
def chat_interface_after(self, question, history):
response = self.predict_test(question)
highlighted_answer = self.highlight_text(response["answer"], response["highlight_start"], response["highlight_end"])
return highlighted_answer
if __name__ == "__main__":
bot = ChatBot(df_path=DATA_PATH, model_path=MODEL_DICT, tokenizer_path=MODEL_DICT, embedding_model_name=DEFAULT_SENTENCE_EMBEDDING_MODEL, embeddingsPath=EMBEDDINGS_PATH)
# bot.load_data()
# bot.load_model()
# bot.load_embedding_model()
# embeddings = bot.load_embeddings(EMBEDDINGS_PATH)
# bot.set_index(bot.prepare_sentences_vector(embeddings))
examples = [
'ขอเลขที่บัญชีของบริษัทหน่อย',
'บริษัทตั้งอยู่ที่ถนนอะไร',
'ขอช่องทางติดตามข่าวสารทาง Line หน่อย',
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 ในแต่ละแพลตฟอร์ม',
'อยากทราบความถี่ในการดึงข้อมูลของ DXT360 บน Twitter',
# 'ช่องทางติดตามข่าวสารของเรา',
]
demo_before = gr.ChatInterface(fn=bot.chat_interface_before, examples=examples)
demo_after = gr.ChatInterface(fn=bot.chat_interface_after, examples=examples)
interface = gr.TabbedInterface([demo_before, demo_after], ["Before", "After"])
interface.launch()
|