kovacsvi commited on
Commit
4ce3fc4
·
1 Parent(s): 77eca8d

relative frequency in percentages

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -176,14 +176,25 @@ def plot_emotion_barplot(heatmap_data):
176
  most_probable_emotions = heatmap_data.idxmax(axis=0)
177
  emotion_counts = most_probable_emotions.value_counts()
178
  all_emotions = heatmap_data.index
179
- emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
 
 
 
 
180
  palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index]
 
181
  fig, ax = plt.subplots(figsize=(8, 6))
182
- sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax)
 
 
 
 
 
183
  ax.set_title("Relative Frequencies of Predicted Emotions")
184
- ax.set_xlabel("Relative Frequency")
185
  ax.set_ylabel("Emotions")
186
  plt.tight_layout()
 
187
  return fig
188
 
189
  def predict_wrapper(text, language):
 
176
  most_probable_emotions = heatmap_data.idxmax(axis=0)
177
  emotion_counts = most_probable_emotions.value_counts()
178
  all_emotions = heatmap_data.index
179
+
180
+ # Convert to percentage, round to integer
181
+ emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum() * 100).round(0)
182
+ emotion_frequencies = emotion_frequencies.sort_values(ascending=False)
183
+
184
  palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index]
185
+
186
  fig, ax = plt.subplots(figsize=(8, 6))
187
+ bars = sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax)
188
+
189
+ # Add % labels on the bars
190
+ for i, (value, label) in enumerate(zip(emotion_frequencies.values, emotion_frequencies.index)):
191
+ ax.text(value + 1, i, f"{int(value)}%", va='center')
192
+
193
  ax.set_title("Relative Frequencies of Predicted Emotions")
194
+ ax.set_xlabel("Percentage")
195
  ax.set_ylabel("Emotions")
196
  plt.tight_layout()
197
+
198
  return fig
199
 
200
  def predict_wrapper(text, language):