Spaces:
Sleeping
Sleeping
| import os | |
| from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
| from interfaces.cap import languages as languages_cap | |
| from interfaces.cap import domains as domains_cap | |
| from interfaces.cap import build_huggingface_path as hf_cap_path | |
| from interfaces.manifesto import build_huggingface_path as hf_manifesto_path | |
| from interfaces.sentiment import build_huggingface_path as hf_sentiment_path | |
| from interfaces.emotion import build_huggingface_path as hf_emotion_path | |
| HF_TOKEN = os.environ["hf_read"] | |
| # should be a temporary solution | |
| models = [hf_manifesto_path(""), hf_sentiment_path(""), hf_emotion_path("")] | |
| domains_cap = list(domains_cap.values()) | |
| for language in languages_cap: | |
| for domain in domains_cap: | |
| models.append(hf_cap_path(language, domain)) | |
| tokenizers = ["xlm-roberta-large"] | |
| def download_hf_models(): | |
| for model_id in models: | |
| AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", | |
| token=HF_TOKEN) | |
| for tokenizer_id in tokenizers: | |
| AutoTokenizer.from_pretrained(tokenizer_id) | |