import os import torch import numpy as np from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import gradio as gr PATH = '/data/' # at least 150GB storage needs to be attached os.environ['TRANSFORMERS_CACHE'] = PATH os.environ['HF_HOME'] = PATH os.environ['HF_DATASETS_CACHE'] = PATH os.environ['TORCH_HOME'] = PATH HF_TOKEN = os.environ["hf_read"] SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"} LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"] def build_huggingface_path(language: str): if language == "Czech" or language == "Slovakian": return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4" return "poltextlab/xlm-roberta-large-pooled-MORES" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) model.to(device) inputs = tokenizer(text, max_length=512, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) model.eval() with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() output_pred = {model.config.id2label[i]: probs[i] for i in np.argsort(probs)[::-1]} output_info = f'
Prediction was made using the {model_id} model.
' return output_pred, output_info def predict_wrapper(text, language): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" return predict(text, model_id, tokenizer_id) with gr.Blocks() as demo: gr.Interface( fn=predict_wrapper, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(LANGUAGES, label="Language")], outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()]) if __name__ == "__main__": demo.launch()