File size: 3,581 Bytes
158b5a1
 
fb05782
158b5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb05782
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158b5a1
 
 
 
 
 
 
 
 
 
 
c1f3033
158b5a1
 
f61fe0b
158b5a1
 
 
 
 
 
b82d609
fb05782
b82d609
 
 
 
158b5a1
 
 
 
 
fb05782
 
 
 
 
b82d609
 
fb05782
20f3f13
fb05782
158b5a1
 
fb05782
23bf035
3c4b3e3
23bf035
 
 
 
 
f7c3109
cc6aa04
f7c3109
 
1830273
4ee3727
f7c3109
f516e56
f7c3109
fb05782
 
158b5a1
fb05782
 
 
158b5a1
 
 
fb05782
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import torch
import spacy
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import gradio as gr

PATH = '/data/' # at least 150GB storage needs to be attached
os.environ['TRANSFORMERS_CACHE'] = PATH
os.environ['HF_HOME'] = PATH
os.environ['HF_DATASETS_CACHE'] = PATH
os.environ['TORCH_HOME'] = PATH

HF_TOKEN = os.environ["hf_read"]

SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"}
LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"]

def load_spacy_model(model_name="xx_sent_ud_sm"):
    try:
        model = spacy.load(model_name)
    except OSError:
        spacy.cli.download(model_name)
        model = spacy.load(model_name)
    return model

def split_sentences(text, model):
    # disable pipeline components not necessary for splitting
    model.disable_pipes(model.pipe_names)  # first disable all the pipes
    model.enable_pipe("senter") # then enable the sentence splitter only

    doc = model(text)
    sentences = [sent.text for sent in doc.sents]

    return sentences

def build_huggingface_path(language: str):
    if language == "Czech" or language == "Slovakian":
        return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4"
    return "poltextlab/xlm-roberta-large-pooled-MORES"

def predict(text, model_id, tokenizer_id):
    model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)

    inputs = tokenizer(text,
                       max_length=64,
                       truncation=True,
                       padding="do_not_pad",
                       return_tensors="pt")
    model.eval()

    with torch.no_grad():
        logits = model(**inputs).logits

    probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
    return probs

def get_most_probable_label(probs):
    label = model.config.id2label[probs.argmax()]
    probability = f"{round(100 * probs.max(), 2)}%"
    return [sentence, label, probability]

def predict_wrapper(text, language):
    model_id = build_huggingface_path(language)
    tokenizer_id = "xlm-roberta-large"

    spacy_model = load_spacy_model()
    sentences = split_sentences(text, spacy_model)

    results = []
    for sentence in sentences:
        probs = predict(sentence, model_id, tokenizer_id)
        results.append(get_most_probable_label(probs))

    output_info = f'Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.'
    return results, output_info

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...")
        with gr.Column():
            with gr.Row():
                language_choice = gr.Dropdown(choices=LANGUAGES, label="Language", value="English")
            with gr.Row():
                predict_button = gr.Button("Submit")

    with gr.Row():
        result_table = gr.Dataframe(
            headers=["Sentence", "Prediction", "Confidence"],
            column_widths=["65%", "25%", "10%"],
            wrap=True # important
        )
    with gr.Row():
        model_info = gr.Markdown()

    predict_button.click(
        fn=predict_wrapper,
        inputs=[input_text, language_choice],
        outputs=[result_table, model_info]
    )

if __name__ == "__main__":
    demo.launch()