import os import torch import spacy import spaces import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import gradio as gr import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap import matplotlib.colors as mcolors import plotly.express as px import seaborn as sns PATH = '/data/' # at least 150GB storage needs to be attached os.environ['TRANSFORMERS_CACHE'] = PATH os.environ['HF_HOME'] = PATH os.environ['HF_DATASETS_CACHE'] = PATH os.environ['TORCH_HOME'] = PATH HF_TOKEN = os.environ["hf_read"] SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"} LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"] id2label = { 0: "Anger", 1: "Fear", 2: "Disgust", 3: "Sadness", 4: "Joy", 5: "None of Them" } emotion_colors = { "Anger": "#D96459", "Fear": "#6A8EAE", "Disgust": "#A4C639", "Sadness": "#9DBCD4", "Joy": "#F3E9A8", "None of Them": "#C0C0C0" } def load_spacy_model(model_name="xx_sent_ud_sm"): try: model = spacy.load(model_name) except OSError: spacy.cli.download(model_name) model = spacy.load(model_name) return model def split_sentences(text, model): # disable pipeline components not necessary for splitting model.disable_pipes(model.pipe_names) # first disable all the pipes model.enable_pipe("senter") # then enable the sentence splitter only doc = model(text) sentences = [sent.text for sent in doc.sents] return sentences def build_huggingface_path(language: str): if language == "Czech" or language == "Slovakian": return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4" return "poltextlab/xlm-roberta-large-pooled-emotions6" @spaces.GPU def predict(text, model_id, tokenizer_id): model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) inputs = tokenizer(text, max_length=64, truncation=True, padding="do_not_pad", return_tensors="pt") model.eval() with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() return probs def get_most_probable_label(probs): label = id2label[probs.argmax()] probability = f"{round(100 * probs.max(), 2)}%" return label, probability def prepare_heatmap_data(data): heatmap_data = pd.DataFrame(0.0, index=id2label.values(), columns=range(len(data))) for idx, row in enumerate(data): confidences = row["emotions"].tolist() for idy, confidence in enumerate(confidences): emotion = id2label[idy] heatmap_data.at[emotion, idx] = round(confidence, 4) heatmap_data.columns = [item["sentence"][:18]+"..." for item in data] return heatmap_data def plot_emotion_heatmap(heatmap_data): # Transpose: now rows = sentences, columns = emotions heatmap_data = heatmap_data.T # Normalize each row (sentence-wise) normalized_data = heatmap_data.copy() for row in normalized_data.index: max_val = normalized_data.loc[row].max() normalized_data.loc[row] = normalized_data.loc[row] / max_val if max_val > 0 else 0 # Create color matrix color_matrix = np.empty((len(normalized_data.index), len(normalized_data.columns), 3)) for i, sentence in enumerate(normalized_data.index): for j, emotion in enumerate(normalized_data.columns): val = normalized_data.loc[sentence, emotion] base_rgb = mcolors.to_rgb(emotion_colors[emotion]) # Blend from white to base color blended = tuple(1 - val * (1 - c) for c in base_rgb) color_matrix[i, j] = blended fig, ax = plt.subplots(figsize=(len(normalized_data.columns) * 0.8 + 2, len(normalized_data.index) * 0.5 + 2)) ax.imshow(color_matrix, aspect='auto') # Set ticks and labels ax.set_xticks(np.arange(len(normalized_data.columns))) ax.set_xticklabels(normalized_data.columns, rotation=45, ha='right', fontsize=10) ax.set_yticks(np.arange(len(normalized_data.index))) ax.set_yticklabels(normalized_data.index, rotation=0, fontsize=10) ax.set_xlabel("Emotions") ax.set_ylabel("Sentences") plt.tight_layout() return fig def plot_average_emotion_pie(heatmap_data): all_emotion_scores = np.array([item['emotions'] for item in heatmap_data]) mean_scores = all_emotion_scores.mean(axis=0) labels = [id2label[i] for i in range(len(mean_scores))] sizes = mean_scores # optional: remove emotions with near-zero average labels_filtered = [] sizes_filtered = [] for l, s in zip(labels, sizes): if s > 0.01: # You can change this threshold labels_filtered.append(l) sizes_filtered.append(s) fig, ax = plt.subplots(figsize=(6, 6)) wedges, texts, autotexts = ax.pie( sizes_filtered, labels=labels_filtered, autopct='%1.1f%%', startangle=140, textprops={'fontsize': 12}, colors=[emotion_colors[l] for l in labels_filtered] ) ax.axis('equal') # Equal aspect ratio ensures a circle plt.title("Average Emotion Confidence Across Sentences", fontsize=14) return fig def plot_emotion_barplot(heatmap_data): most_probable_emotions = heatmap_data.idxmax(axis=0) emotion_counts = most_probable_emotions.value_counts() all_emotions = heatmap_data.index emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False) palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index] fig, ax = plt.subplots(figsize=(8, 6)) sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax) ax.set_title("Relative Frequencies of Predicted Emotions") ax.set_xlabel("Relative Frequency") ax.set_ylabel("Emotions") plt.tight_layout() return fig def predict_wrapper(text, language): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" spacy_model = load_spacy_model() sentences = split_sentences(text, spacy_model) results = [] results_heatmap = [] for sentence in sentences: probs = predict(sentence, model_id, tokenizer_id) label, probability = get_most_probable_label(probs) results.append([sentence, label, probability]) results_heatmap.append({"sentence":sentence, "emotions":probs}) # let's see... print(results) print(results_heatmap) figure = plot_emotion_barplot(prepare_heatmap_data(results_heatmap)) heatmap = plot_emotion_heatmap(prepare_heatmap_data(results_heatmap)) piechart = plot_average_emotion_pie(results_heatmap) output_info = f'Prediction was made using the {model_id} model.' return results, figure, piechart, heatmap, output_info with gr.Blocks() as demo: placeholder = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua." with gr.Row(): with gr.Column(): input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...") with gr.Column(): with gr.Row(): language_choice = gr.Dropdown(choices=LANGUAGES, label="Language", value="English") with gr.Row(): predict_button = gr.Button("Submit") with gr.Row(): with gr.Column(scale=7): result_table = gr.Dataframe( headers=["Sentence", "Prediction", "Confidence"], column_widths=["65%", "25%", "10%"], wrap=True # important ) with gr.Column(scale=3): gr.Markdown(placeholder) with gr.Row(): with gr.Column(scale=7): plot = gr.Plot() with gr.Column(scale=3): gr.Markdown(placeholder) with gr.Row(): with gr.Column(scale=7): piechart = gr.Plot() with gr.Column(scale=3): gr.Markdown(placeholder) with gr.Row(): with gr.Column(scale=7): heatmap = gr.Plot() with gr.Column(scale=3): gr.Markdown(placeholder) with gr.Row(): model_info = gr.Markdown() predict_button.click( fn=predict_wrapper, inputs=[input_text, language_choice], outputs=[result_table, plot, piechart, heatmap, model_info] ) if __name__ == "__main__": demo.launch()