Spaces:
Sleeping
Sleeping
vickeee465
commited on
Commit
·
d16db8d
1
Parent(s):
416f5a0
making it prettier
Browse files
app.py
CHANGED
|
@@ -105,25 +105,39 @@ def plot_sunburst_chart(heatmap_data):
|
|
| 105 |
for item in heatmap_data:
|
| 106 |
sentence = item['sentence']
|
| 107 |
emotions = item['emotions']
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
for i, score in enumerate(emotions):
|
| 109 |
data.append({
|
| 110 |
-
'
|
| 111 |
-
'sentence': sentence,
|
| 112 |
'emotion': id2label[i],
|
| 113 |
'score': float(score)
|
| 114 |
})
|
| 115 |
|
| 116 |
df = pd.DataFrame(data)
|
| 117 |
|
| 118 |
-
#
|
| 119 |
fig = px.sunburst(
|
| 120 |
df,
|
| 121 |
-
path=['
|
| 122 |
values='score',
|
| 123 |
color='emotion',
|
| 124 |
-
|
|
|
|
| 125 |
)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
return fig
|
| 128 |
|
| 129 |
def plot_emotion_barplot(heatmap_data):
|
|
|
|
| 105 |
for item in heatmap_data:
|
| 106 |
sentence = item['sentence']
|
| 107 |
emotions = item['emotions']
|
| 108 |
+
|
| 109 |
+
# Wrap long sentences for better display
|
| 110 |
+
sentence_wrapped = "\n".join([sentence[i:i + 50] for i in range(0, len(sentence), 50)])
|
| 111 |
+
|
| 112 |
for i, score in enumerate(emotions):
|
| 113 |
data.append({
|
| 114 |
+
'sentence': sentence_wrapped,
|
|
|
|
| 115 |
'emotion': id2label[i],
|
| 116 |
'score': float(score)
|
| 117 |
})
|
| 118 |
|
| 119 |
df = pd.DataFrame(data)
|
| 120 |
|
| 121 |
+
# Create sunburst chart (no "root" level)
|
| 122 |
fig = px.sunburst(
|
| 123 |
df,
|
| 124 |
+
path=['sentence', 'emotion'],
|
| 125 |
values='score',
|
| 126 |
color='emotion',
|
| 127 |
+
hover_data={'score': ':.3f'},
|
| 128 |
+
title='Sentence-Level Emotion Confidence Sunburst'
|
| 129 |
)
|
| 130 |
|
| 131 |
+
# Make the chart bigger
|
| 132 |
+
fig.update_layout(
|
| 133 |
+
width=800,
|
| 134 |
+
height=800,
|
| 135 |
+
margin=dict(t=50, l=0, r=0, b=0)
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
# Display the chart in Streamlit
|
| 139 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 140 |
+
|
| 141 |
return fig
|
| 142 |
|
| 143 |
def plot_emotion_barplot(heatmap_data):
|