Spaces:
Sleeping
Sleeping
vickeee465
commited on
Commit
·
7e66e8d
1
Parent(s):
2c43ece
global emotion color coding
Browse files
app.py
CHANGED
|
@@ -31,6 +31,15 @@ id2label = {
|
|
| 31 |
4: "Joy",
|
| 32 |
5: "None of Them"
|
| 33 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def load_spacy_model(model_name="xx_sent_ud_sm"):
|
| 35 |
try:
|
| 36 |
model = spacy.load(model_name)
|
|
@@ -117,40 +126,6 @@ def plot_emotion_heatmap(heatmap_data):
|
|
| 117 |
|
| 118 |
return fig
|
| 119 |
|
| 120 |
-
def plot_sunburst_chart(heatmap_data):
|
| 121 |
-
data = []
|
| 122 |
-
for item in heatmap_data:
|
| 123 |
-
sentence = item['sentence']
|
| 124 |
-
emotions = item['emotions']
|
| 125 |
-
|
| 126 |
-
sentence_wrapped = "\n".join([sentence[i:i + 50] for i in range(0, len(sentence), 50)])
|
| 127 |
-
|
| 128 |
-
for i, score in enumerate(emotions):
|
| 129 |
-
data.append({
|
| 130 |
-
'sentence': sentence_wrapped,
|
| 131 |
-
'emotion': id2label[i],
|
| 132 |
-
'score': float(score)
|
| 133 |
-
})
|
| 134 |
-
|
| 135 |
-
df = pd.DataFrame(data)
|
| 136 |
-
|
| 137 |
-
fig = px.sunburst(
|
| 138 |
-
df,
|
| 139 |
-
path=['sentence', 'emotion'],
|
| 140 |
-
values='score',
|
| 141 |
-
color='emotion',
|
| 142 |
-
hover_data={'score': ':.3f'},
|
| 143 |
-
title='Sentence-Level Emotion Confidence'
|
| 144 |
-
)
|
| 145 |
-
|
| 146 |
-
fig.update_layout(
|
| 147 |
-
width=800,
|
| 148 |
-
height=800,
|
| 149 |
-
margin=dict(t=50, l=0, r=0, b=0)
|
| 150 |
-
)
|
| 151 |
-
|
| 152 |
-
return fig
|
| 153 |
-
|
| 154 |
|
| 155 |
def plot_average_emotion_pie(heatmap_data):
|
| 156 |
all_emotion_scores = np.array([item['emotions'] for item in heatmap_data])
|
|
@@ -173,7 +148,8 @@ def plot_average_emotion_pie(heatmap_data):
|
|
| 173 |
labels=labels_filtered,
|
| 174 |
autopct='%1.1f%%',
|
| 175 |
startangle=140,
|
| 176 |
-
textprops={'fontsize': 12}
|
|
|
|
| 177 |
)
|
| 178 |
|
| 179 |
ax.axis('equal') # Equal aspect ratio ensures a circle
|
|
@@ -186,8 +162,9 @@ def plot_emotion_barplot(heatmap_data):
|
|
| 186 |
emotion_counts = most_probable_emotions.value_counts()
|
| 187 |
all_emotions = heatmap_data.index
|
| 188 |
emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
|
|
|
|
| 189 |
fig, ax = plt.subplots(figsize=(8, 6))
|
| 190 |
-
sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=
|
| 191 |
ax.set_title("Relative Frequencies of Predicted Emotions")
|
| 192 |
ax.set_xlabel("Relative Frequency")
|
| 193 |
ax.set_ylabel("Emotions")
|
|
|
|
| 31 |
4: "Joy",
|
| 32 |
5: "None of Them"
|
| 33 |
}
|
| 34 |
+
|
| 35 |
+
emotion_colors = {
|
| 36 |
+
"Anger": "#D96459",
|
| 37 |
+
"Fear": "#6A8EAE",
|
| 38 |
+
"Disgust": "#A4C639",
|
| 39 |
+
"Sadness": "#9DBCD4",
|
| 40 |
+
"Joy": "#F3E9A8",
|
| 41 |
+
"None of Them": "#C0C0C0"
|
| 42 |
+
}
|
| 43 |
def load_spacy_model(model_name="xx_sent_ud_sm"):
|
| 44 |
try:
|
| 45 |
model = spacy.load(model_name)
|
|
|
|
| 126 |
|
| 127 |
return fig
|
| 128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def plot_average_emotion_pie(heatmap_data):
|
| 131 |
all_emotion_scores = np.array([item['emotions'] for item in heatmap_data])
|
|
|
|
| 148 |
labels=labels_filtered,
|
| 149 |
autopct='%1.1f%%',
|
| 150 |
startangle=140,
|
| 151 |
+
textprops={'fontsize': 12},
|
| 152 |
+
colors=[emotion_colors[l] for l in labels_filtered]
|
| 153 |
)
|
| 154 |
|
| 155 |
ax.axis('equal') # Equal aspect ratio ensures a circle
|
|
|
|
| 162 |
emotion_counts = most_probable_emotions.value_counts()
|
| 163 |
all_emotions = heatmap_data.index
|
| 164 |
emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
|
| 165 |
+
palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index]
|
| 166 |
fig, ax = plt.subplots(figsize=(8, 6))
|
| 167 |
+
sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax)
|
| 168 |
ax.set_title("Relative Frequencies of Predicted Emotions")
|
| 169 |
ax.set_xlabel("Relative Frequency")
|
| 170 |
ax.set_ylabel("Emotions")
|