Spaces:
Running
Running
vickeee465
commited on
Commit
·
7e66e8d
1
Parent(s):
2c43ece
global emotion color coding
Browse files
app.py
CHANGED
@@ -31,6 +31,15 @@ id2label = {
|
|
31 |
4: "Joy",
|
32 |
5: "None of Them"
|
33 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def load_spacy_model(model_name="xx_sent_ud_sm"):
|
35 |
try:
|
36 |
model = spacy.load(model_name)
|
@@ -117,40 +126,6 @@ def plot_emotion_heatmap(heatmap_data):
|
|
117 |
|
118 |
return fig
|
119 |
|
120 |
-
def plot_sunburst_chart(heatmap_data):
|
121 |
-
data = []
|
122 |
-
for item in heatmap_data:
|
123 |
-
sentence = item['sentence']
|
124 |
-
emotions = item['emotions']
|
125 |
-
|
126 |
-
sentence_wrapped = "\n".join([sentence[i:i + 50] for i in range(0, len(sentence), 50)])
|
127 |
-
|
128 |
-
for i, score in enumerate(emotions):
|
129 |
-
data.append({
|
130 |
-
'sentence': sentence_wrapped,
|
131 |
-
'emotion': id2label[i],
|
132 |
-
'score': float(score)
|
133 |
-
})
|
134 |
-
|
135 |
-
df = pd.DataFrame(data)
|
136 |
-
|
137 |
-
fig = px.sunburst(
|
138 |
-
df,
|
139 |
-
path=['sentence', 'emotion'],
|
140 |
-
values='score',
|
141 |
-
color='emotion',
|
142 |
-
hover_data={'score': ':.3f'},
|
143 |
-
title='Sentence-Level Emotion Confidence'
|
144 |
-
)
|
145 |
-
|
146 |
-
fig.update_layout(
|
147 |
-
width=800,
|
148 |
-
height=800,
|
149 |
-
margin=dict(t=50, l=0, r=0, b=0)
|
150 |
-
)
|
151 |
-
|
152 |
-
return fig
|
153 |
-
|
154 |
|
155 |
def plot_average_emotion_pie(heatmap_data):
|
156 |
all_emotion_scores = np.array([item['emotions'] for item in heatmap_data])
|
@@ -173,7 +148,8 @@ def plot_average_emotion_pie(heatmap_data):
|
|
173 |
labels=labels_filtered,
|
174 |
autopct='%1.1f%%',
|
175 |
startangle=140,
|
176 |
-
textprops={'fontsize': 12}
|
|
|
177 |
)
|
178 |
|
179 |
ax.axis('equal') # Equal aspect ratio ensures a circle
|
@@ -186,8 +162,9 @@ def plot_emotion_barplot(heatmap_data):
|
|
186 |
emotion_counts = most_probable_emotions.value_counts()
|
187 |
all_emotions = heatmap_data.index
|
188 |
emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
|
|
|
189 |
fig, ax = plt.subplots(figsize=(8, 6))
|
190 |
-
sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=
|
191 |
ax.set_title("Relative Frequencies of Predicted Emotions")
|
192 |
ax.set_xlabel("Relative Frequency")
|
193 |
ax.set_ylabel("Emotions")
|
|
|
31 |
4: "Joy",
|
32 |
5: "None of Them"
|
33 |
}
|
34 |
+
|
35 |
+
emotion_colors = {
|
36 |
+
"Anger": "#D96459",
|
37 |
+
"Fear": "#6A8EAE",
|
38 |
+
"Disgust": "#A4C639",
|
39 |
+
"Sadness": "#9DBCD4",
|
40 |
+
"Joy": "#F3E9A8",
|
41 |
+
"None of Them": "#C0C0C0"
|
42 |
+
}
|
43 |
def load_spacy_model(model_name="xx_sent_ud_sm"):
|
44 |
try:
|
45 |
model = spacy.load(model_name)
|
|
|
126 |
|
127 |
return fig
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def plot_average_emotion_pie(heatmap_data):
|
131 |
all_emotion_scores = np.array([item['emotions'] for item in heatmap_data])
|
|
|
148 |
labels=labels_filtered,
|
149 |
autopct='%1.1f%%',
|
150 |
startangle=140,
|
151 |
+
textprops={'fontsize': 12},
|
152 |
+
colors=[emotion_colors[l] for l in labels_filtered]
|
153 |
)
|
154 |
|
155 |
ax.axis('equal') # Equal aspect ratio ensures a circle
|
|
|
162 |
emotion_counts = most_probable_emotions.value_counts()
|
163 |
all_emotions = heatmap_data.index
|
164 |
emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
|
165 |
+
palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index]
|
166 |
fig, ax = plt.subplots(figsize=(8, 6))
|
167 |
+
sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax)
|
168 |
ax.set_title("Relative Frequencies of Predicted Emotions")
|
169 |
ax.set_xlabel("Relative Frequency")
|
170 |
ax.set_ylabel("Emotions")
|