Spaces:
Running
Running
File size: 8,899 Bytes
158b5a1 fb05782 315aa5c 158b5a1 6b24c4d 158b5a1 cb8ef04 467c2e7 0f6522c 7780172 3fd2db3 158b5a1 50c2025 7e66e8d fb05782 158b5a1 2fe6a76 158b5a1 315aa5c 158b5a1 c1f3033 158b5a1 f61fe0b 158b5a1 b82d609 fb05782 b82d609 50c2025 b82d609 30624e1 158b5a1 40de5cf 3fd2db3 db0e152 40de5cf 0bade3d 40de5cf 09dd2f7 db0e152 40de5cf db0e152 3fd2db3 ed10ca1 433b160 3ad91fd 433b160 0f6522c 433b160 0f6522c 433b160 0f6522c 433b160 0f6522c 433b160 0f6522c 433b160 3ad91fd 433b160 0efc44c 433b160 3fd2db3 ccd8c01 7e66e8d ccd8c01 acd22e7 8deb410 acd22e7 aba39cd 7e66e8d acd22e7 7e66e8d b444720 acd22e7 158b5a1 fb05782 3fd2db3 fb05782 b82d609 8383fbb 3fd2db3 fb05782 6ba52eb acd22e7 f382753 2c43ece 20f3f13 ccd8c01 3fd2db3 158b5a1 8106682 fb05782 23bf035 3c4b3e3 23bf035 f7c3109 cc6aa04 8106682 6940c7c 8106682 6940c7c 416f5a0 8106682 416f5a0 f382753 8106682 f382753 f516e56 f7c3109 fb05782 158b5a1 fb05782 ccd8c01 fb05782 158b5a1 fb05782 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import torch
import spacy
import spaces
import numpy as np
import pandas as pd
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import gradio as gr
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap
import matplotlib.colors as mcolors
import plotly.express as px
import seaborn as sns
PATH = '/data/' # at least 150GB storage needs to be attached
os.environ['TRANSFORMERS_CACHE'] = PATH
os.environ['HF_HOME'] = PATH
os.environ['HF_DATASETS_CACHE'] = PATH
os.environ['TORCH_HOME'] = PATH
HF_TOKEN = os.environ["hf_read"]
SENTIMENT_LABEL_NAMES = {0: "Negative", 1: "No sentiment or Neutral sentiment", 2: "Positive"}
LANGUAGES = ["Czech", "English", "French", "German", "Hungarian", "Polish", "Slovakian"]
id2label = {
0: "Anger",
1: "Fear",
2: "Disgust",
3: "Sadness",
4: "Joy",
5: "None of Them"
}
emotion_colors = {
"Anger": "#D96459",
"Fear": "#6A8EAE",
"Disgust": "#A4C639",
"Sadness": "#9DBCD4",
"Joy": "#F3E9A8",
"None of Them": "#C0C0C0"
}
def load_spacy_model(model_name="xx_sent_ud_sm"):
try:
model = spacy.load(model_name)
except OSError:
spacy.cli.download(model_name)
model = spacy.load(model_name)
return model
def split_sentences(text, model):
# disable pipeline components not necessary for splitting
model.disable_pipes(model.pipe_names) # first disable all the pipes
model.enable_pipe("senter") # then enable the sentence splitter only
doc = model(text)
sentences = [sent.text for sent in doc.sents]
return sentences
def build_huggingface_path(language: str):
if language == "Czech" or language == "Slovakian":
return "visegradmedia-emotion/Emotion_RoBERTa_pooled_V4"
return "poltextlab/xlm-roberta-large-pooled-emotions6"
@spaces.GPU
def predict(text, model_id, tokenizer_id):
model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
inputs = tokenizer(text,
max_length=64,
truncation=True,
padding="do_not_pad",
return_tensors="pt")
model.eval()
with torch.no_grad():
logits = model(**inputs).logits
probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten()
return probs
def get_most_probable_label(probs):
label = id2label[probs.argmax()]
probability = f"{round(100 * probs.max(), 2)}%"
return label, probability
def prepare_heatmap_data(data):
heatmap_data = pd.DataFrame(0.0, index=id2label.values(), columns=range(len(data)))
for idx, row in enumerate(data):
confidences = row["emotions"].tolist()
for idy, confidence in enumerate(confidences):
emotion = id2label[idy]
heatmap_data.at[emotion, idx] = round(confidence, 4)
heatmap_data.columns = [item["sentence"][:18]+"..." for item in data]
return heatmap_data
def plot_emotion_heatmap(heatmap_data):
# Transpose: now rows = sentences, columns = emotions
heatmap_data = heatmap_data.T
# Normalize each row (sentence-wise)
normalized_data = heatmap_data.copy()
for row in normalized_data.index:
max_val = normalized_data.loc[row].max()
normalized_data.loc[row] = normalized_data.loc[row] / max_val if max_val > 0 else 0
# Create color matrix
color_matrix = np.empty((len(normalized_data.index), len(normalized_data.columns), 3))
for i, sentence in enumerate(normalized_data.index):
for j, emotion in enumerate(normalized_data.columns):
val = normalized_data.loc[sentence, emotion]
base_rgb = mcolors.to_rgb(emotion_colors[emotion])
# Blend from white to base color
blended = tuple(1 - val * (1 - c) for c in base_rgb)
color_matrix[i, j] = blended
fig, ax = plt.subplots(figsize=(len(normalized_data.columns) * 0.8 + 2, len(normalized_data.index) * 0.5 + 2))
ax.imshow(color_matrix, aspect='auto')
# Set ticks and labels
ax.set_xticks(np.arange(len(normalized_data.columns)))
ax.set_xticklabels(normalized_data.columns, rotation=45, ha='right', fontsize=10)
ax.set_yticks(np.arange(len(normalized_data.index)))
ax.set_yticklabels(normalized_data.index, rotation=0, fontsize=10)
ax.set_xlabel("Emotions")
ax.set_ylabel("Sentences")
plt.tight_layout()
return fig
def plot_average_emotion_pie(heatmap_data):
all_emotion_scores = np.array([item['emotions'] for item in heatmap_data])
mean_scores = all_emotion_scores.mean(axis=0)
labels = [id2label[i] for i in range(len(mean_scores))]
sizes = mean_scores
# optional: remove emotions with near-zero average
labels_filtered = []
sizes_filtered = []
for l, s in zip(labels, sizes):
if s > 0.01: # You can change this threshold
labels_filtered.append(l)
sizes_filtered.append(s)
fig, ax = plt.subplots(figsize=(6, 6))
wedges, texts, autotexts = ax.pie(
sizes_filtered,
labels=labels_filtered,
autopct='%1.1f%%',
startangle=140,
textprops={'fontsize': 12},
colors=[emotion_colors[l] for l in labels_filtered]
)
ax.axis('equal') # Equal aspect ratio ensures a circle
plt.title("Average Emotion Confidence Across Sentences", fontsize=14)
return fig
def plot_emotion_barplot(heatmap_data):
most_probable_emotions = heatmap_data.idxmax(axis=0)
emotion_counts = most_probable_emotions.value_counts()
all_emotions = heatmap_data.index
emotion_frequencies = (emotion_counts.reindex(all_emotions, fill_value=0) / emotion_counts.sum()).sort_values(ascending=False)
palette = [emotion_colors[emotion] for emotion in emotion_frequencies.index]
fig, ax = plt.subplots(figsize=(8, 6))
sns.barplot(x=emotion_frequencies.values, y=emotion_frequencies.index, palette=palette, ax=ax)
ax.set_title("Relative Frequencies of Predicted Emotions")
ax.set_xlabel("Relative Frequency")
ax.set_ylabel("Emotions")
plt.tight_layout()
return fig
def predict_wrapper(text, language):
model_id = build_huggingface_path(language)
tokenizer_id = "xlm-roberta-large"
spacy_model = load_spacy_model()
sentences = split_sentences(text, spacy_model)
results = []
results_heatmap = []
for sentence in sentences:
probs = predict(sentence, model_id, tokenizer_id)
label, probability = get_most_probable_label(probs)
results.append([sentence, label, probability])
results_heatmap.append({"sentence":sentence, "emotions":probs})
# let's see...
print(results)
print(results_heatmap)
figure = plot_emotion_barplot(prepare_heatmap_data(results_heatmap))
heatmap = plot_emotion_heatmap(prepare_heatmap_data(results_heatmap))
piechart = plot_average_emotion_pie(results_heatmap)
output_info = f'Prediction was made using the <a href="https://huggingface.co/{model_id}">{model_id}</a> model.'
return results, figure, piechart, heatmap, output_info
with gr.Blocks() as demo:
placeholder = "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua."
with gr.Row():
with gr.Column():
input_text = gr.Textbox(lines=6, label="Input", placeholder="Enter your text here...")
with gr.Column():
with gr.Row():
language_choice = gr.Dropdown(choices=LANGUAGES, label="Language", value="English")
with gr.Row():
predict_button = gr.Button("Submit")
with gr.Row():
with gr.Column(scale=7):
result_table = gr.Dataframe(
headers=["Sentence", "Prediction", "Confidence"],
column_widths=["65%", "25%", "10%"],
wrap=True # important
)
with gr.Column(scale=3):
gr.Markdown(placeholder)
with gr.Row():
with gr.Column(scale=7):
plot = gr.Plot()
with gr.Column(scale=3):
gr.Markdown(placeholder)
with gr.Row():
with gr.Column(scale=7):
piechart = gr.Plot()
with gr.Column(scale=3):
gr.Markdown(placeholder)
with gr.Row():
with gr.Column(scale=7):
heatmap = gr.Plot()
with gr.Column(scale=3):
gr.Markdown(placeholder)
with gr.Row():
model_info = gr.Markdown()
predict_button.click(
fn=predict_wrapper,
inputs=[input_text, language_choice],
outputs=[result_table, plot, piechart, heatmap, model_info]
)
if __name__ == "__main__":
demo.launch()
|