import gradio as gr import os import torch import numpy as np from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi HF_TOKEN = os.environ["hf_read"] languages = [ "English" ] from label_dicts import ONTOLISST_LABEL_NAMES # --- DEBUG --- import shutil def convert_size(size): for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']: if size < 1024: return f"{size:.2f} {unit}" size /= 1024 def get_disk_space(path="/"): total, used, free = shutil.disk_usage(path) return { "Total": convert_size(total), "Used": convert_size(used), "Free": convert_size(free) } # --- def build_huggingface_path(language: str): return "poltextlab/xlm-roberta-large_ontolisst_v1" def predict(text, model_id, tokenizer_id): device = torch.device("cpu") model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", offload_folder="offload", token=HF_TOKEN) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) # --- DEBUG --- disk_space = get_disk_space('/data/') print("Disk Space Info:") for key, value in disk_space.items(): print(f"{key}: {value}") # --- model.to(device) inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) model.eval() with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() predicted_class_id = probs.argmax() predicted_class_id = {4: 2, 5: 1}.get(predicted_class_id, 0) output_pred = ONTOLISST_LABEL_NAMES.get(predicted_class_id, predicted_class_id) output_info = f'
Prediction was made using the {model_id} model.
' return output_pred, output_info def predict_cap(text, language): model_id = build_huggingface_path(language) tokenizer_id = "xlm-roberta-large" return predict(text, model_id, tokenizer_id) demo = gr.Interface( title="ONTOLISST Babel Demo", fn=predict_cap, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language")], outputs=[gr.Label(num_top_classes=3, label="Output"), gr.Markdown()])