import gradio as gr import os import torch import numpy as np import pandas as pd from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer from huggingface_hub import HfApi from label_dicts import ILLFRAMES_MIGRATION_LABEL_NAMES, ILLFRAMES_COVID_LABEL_NAMES, ILLFRAMES_WAR_LABEL_NAMES HF_TOKEN = os.environ["hf_read"] languages = [ "English" ] domains = { "Covid": "covid", "Migration": "migration", "War": "war" } # --- DEBUG --- import shutil def convert_size(size): for unit in ['B', 'KB', 'MB', 'GB', 'TB', 'PB']: if size < 1024: return f"{size:.2f} {unit}" size /= 1024 def get_disk_space(path="/"): total, used, free = shutil.disk_usage(path) return { "Total": convert_size(total), "Used": convert_size(used), "Free": convert_size(free) } # --- def check_huggingface_path(checkpoint_path: str): try: hf_api = HfApi(token=HF_TOKEN) hf_api.model_info(checkpoint_path, token=HF_TOKEN) return True except: return False def build_huggingface_path(domain: str): return f"poltextlab/xlm-roberta-large-english-ILLFRAMES-{domain}" def predict(text, model_id, tokenizer_id, label_names): device = torch.device("cpu") try: model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, offload_folder="offload", device_map="auto", token=HF_TOKEN) except: disk_space = get_disk_space('/data/') print("Disk Space Error:") for key, value in disk_space.items(): print(f"{key}: {value}") shutil.rmtree("/data") model = AutoModelForSequenceClassification.from_pretrained(model_id, low_cpu_mem_usage=True, device_map="auto", token=HF_TOKEN, force_download=True) tokenizer = AutoTokenizer.from_pretrained(tokenizer_id) inputs = tokenizer(text, max_length=256, truncation=True, padding="do_not_pad", return_tensors="pt").to(device) model.eval() with torch.no_grad(): logits = model(**inputs).logits probs = torch.nn.functional.softmax(logits, dim=1).cpu().numpy().flatten() NUMS_DICT = {i: key for i, key in enumerate(sorted(label_names.keys()))} output_pred = {f"[{NUMS_DICT[i]}] {label_names[NUMS_DICT[i]]}": probs[i] for i in np.argsort(probs)[::-1]} output_info = f'

Prediction was made using the {model_id} model.

' return output_pred, output_info def predict_illframes(text, language, domain): domain = domains[domain] model_id = build_huggingface_path(domain) tokenizer_id = "xlm-roberta-large" if domain == "migration": label_names = ILLFRAMES_MIGRATION_LABEL_NAMES elif domain == "covid": label_names = ILLFRAMES_COVID_LABEL_NAMES elif domain == "war": label_names = ILLFRAMES_WAR_LABEL_NAMES return predict(text, model_id, tokenizer_id, label_names) demo = gr.Interface( title="ILLFRAMES Babel Demo", fn=predict_illframes, inputs=[gr.Textbox(lines=6, label="Input"), gr.Dropdown(languages, label="Language"), gr.Dropdown(domains.keys(), label="Domain")], outputs=[gr.Label(num_top_classes=5, label="Output"), gr.Markdown()])